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Abstract. This report develops an ensemble or statistical eddy viscosity model. The model is parame-
terized by an ensemble of solutions of an ensemble-Leray regularization. The combined approach of ensemble
time stepping and ensemble eddy viscosity modeling allows direct parametrization of the turbulent viscosity
coefficient that gives an unconditionally stable algorithm. We prove that the model’s solution approaches
statistical equilibrium as t → ∞; the model’s variance → 0 as t → ∞. The ensemble method is used to
interrogate a rotating flow, testing its predictability by computing effective averaged Lyapunov exponents.

Key words. ensemble, Leray regularization, eddy viscosity, turbulence modeling

1. Introduction. The goal of conventional turbulence models (CTMs) is to produce
a model that accurately predicts time averaged or ensemble averaged flow statistics. Thus
a CTM should quickly converge (in time) to statistical equilibrium that captures averaged
flow behavior. This differs from large eddy simulation models that seek to represent the
essentially dynamic behavior of local spacial averages. The problem addressed herein is how
to give an analytic theory for “convergence to statistical equilibrium” of models and algo-
rithms. We develop a new family of turbulence models herein and study their convergence
by analyzing the evolution of model variance.

Let 〈·〉 denote an ensemble average. The conventional/RANS turbulence model (from
the ensemble averaged Navier-Stokes equations (NSE)) for 〈u〉 is

〈u〉t + 〈u〉 · ∇ 〈u〉 − ∇ · ([ν + νT (l, k′)]∇〈u〉) +∇〈q〉 = 〈f〉 , in Ω, (1.1)

∇ · 〈u〉 = 0, 〈u〉 (x, 0) =
〈
u0
j

〉
(x) in Ω and 〈u〉 = 0 on ∂Ω.

In (1.1), the eddy viscosity (EV) term1 ∇ · (νT (l, k′)∇〈u〉) replaces the divergence of the
Reynolds stresses

Reynolds stress: R(u, u) := 〈u〉 〈u〉 − 〈uu〉 ,
−∇ ·R(u, u) replaced by −∇ · (νT (l, k′)∇〈u〉) .

Since (1.1) is a model, its solution is no longer the exact ensemble average. The turbulent
viscosity coefficient is given by the Kolmogorov-Prandtl relation

νT (l, k′) = Const.l
√
k′,

k′ = kinetic energy in fluctuations,

l = mixing length.

The unknowns k′, l are often modeled by solving additional systems of nonlinear PDEs. On
the other hand, if eddy viscosity models are fundamentally sound and if k′ can be directly
calculated, without modeling, then using an exact value for k′ must increase the physical
fidelity of (1.1).

Calculating k′ requires solving an ensemble of NSE realizations. New algorithms for
ensemble simulation (began in [19]) put this within reach (and possibly at lower cost than
modeling k′).
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When k′ can be directly calculated, νT can be directly calculated giving an ensemble
eddy viscosity model. Ensemble eddy viscosity was studied as a numerical regularization in
[19], [17]. Interestingly, its use as a numerical regularization leads to the wrong system for
〈u〉 (not (1.1)). This report shows that ensemble simulation of (1.1) requires new realization
equations including

uj,t + 〈u〉 · ∇uj −∇ · ([ν + νT (l, k′)]∇uj) +∇pj = fj(x, t) and ∇ · uj = 0, (1.2)

derived in Section 3. (1.2) contains sufficient regularizations to make its solution plausibly
less expensive than a full DNS for each realization. Further, time discretizations of (4.1),
(4.6) are unconditionally stable. In the methods (4.1), (4.6) below, each time step requires
the solutions of J linear systems with a shared coefficient matrix reducing both storage and
work

A

[
u1

p1

∣∣∣∣ · · ·· · ·
∣∣∣∣ uJpJ

]
= [RHS1 |· · ·|RHSJ ] , (1.3)

by use of direct methods, projective, [10], or block iterative methods, e.g., [25], [11], [1], [9],
[12].

Section 4 presents two numerical methods for (1.2) that allow these efficiencies. These
are proven unconditionally, nonlinearly, long time stable. For example, for (1.2) the following
linearly implicit-explicit backward Euler method has these favorable features. With super-
script denoting the time step number, (and suppressing spacial discretization) for j = 1, ..., J

un+1
j − unj

∆t
+ 〈u〉n · ∇un+1

j +∇pn+1
j (1.4)

−ν∆un+1
j −∇ · (2νT (ln, k′n)∇sun+1

j ) = fn+1
j .

We prove that the variance of (1.4) converges to zero as tn → ∞. In other words, the
solution of (1.4) converges to statistical equilibrium as tn → ∞. This is the first result of
this kind we are aware of.

A second order accurate extension with linear system structure (1.3) is given in Section
4 where unconditional stability is proven. Section 2 introduces the definition of variance and
its evolution equation. An important consequence (a proof of the Boussinesq assumption)
is discussed. Section 3 gives the derivation of (1.2) and three other models. Section 5
gives a few numerical tests for 2d forced turbulence. These quantify the difference between
the solution of the model herein and the method studied in [19]. The averaged, effective
Lyapunov exponent is also calculated to verify that ensemble Leray regularization is effective
to squeeze two trajectories together (Proposition 3.2).

1.1. Previous Work. Incomplete data, quantification of uncertainty and sensitivities
and other issues, e.g., [4], [14], [20], [23], [24], [26], require simulation of flow ensembles.
This leads to the competition between ensembles vs. high resolution [15]. In [18] a new
algorithm addressing this competition was given.

The number of ensemble members J can often be taken moderate. The “bred vectors”
algorithm of Toth and Kalnay [26] gives a small set of perturbations of initial conditions
(thus a small ensemble size) that capture maximal ensemble spread. In [32], an interesting
paper studying statistical ensemble of large eddy simulations, it is found that 16 realizations
suffice to provide reliable statistics and the results change little for more realizations. With J
small, ensemble simulation becomes competitive with approaches based on solving auxiliary
systems of PDEs for the turbulent parameterizations in (1.1).

This approach to ensemble parametrization was begun in [19] where the mixing length
l = |u′|4t was investigated. However in [19], EV is a numerical regularization and not a
true turbulence model. The ensemble based parametrization (herein) connects the method
to ideas and diagnostics from the statistical theory of turbulence, [2], [6], [7], [8].
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2. Variance evolution in the Navier-Stokes equations. One goal in a CTM is to
achieve a statistically steady solution, i.e., one with variance = 0. Before analyzing model
variance, we present the behavior of the Reynolds stresses and the evolution of variance for
the Navier-Stokes equations. Consider the 2d or 3d NSE where the ensemble is generated
by a distribution of initial conditions

uj,t + uj · ∇uj − ν4uj +∇pj = f(x, t), in Ω, j = 1, ..., J, (2.1)

∇ · uj = 0, and uj(x, 0) = u0
j (x), in Ω and uj = 0, on ∂Ω.

We assume that all solutions are strong solutions.
Definition 2.1 (Variance). The variance of u and ∇u are

V (u) :=
〈
||uj ||2

〉
− || 〈uj〉 ||2 and V (∇u) :=

〈
||∇uj ||2

〉
− || 〈∇uj〉 ||2.

Recall the (standard) result that variance measures fluctuations.
Lemma 2.2. We have

V (u) =
〈
||u′j ||2

〉
≥ 0 and V (∇u) =

〈
||∇u′j ||2

〉
≥ 0.

Proof. This is a standard calculation. Insert uj = 〈uj〉+ u′j and expand each term.
Averaging the ensemble NSE gives the equation for ensemble averages, ∇ · 〈u〉 = 0 and

〈u〉t + 〈u〉 · ∇ 〈u〉 − ν4〈u〉+∇〈p〉 − ∇ ·R(u, u) = f(x, t),

where R(u, u) := 〈u〉 〈u〉 − 〈uu〉 .

Since all solutions are strong solutions we may calculate the kinetic energy in the mean flow
by taking the inner product with 〈u〉. This gives

1

2

d

dt
|| 〈u〉 ||2 + ν||∇ 〈u〉 ||2 +

∫
Ω

R(u, u) : 〈u〉 dx =

∫
Ω

f(x, t) · 〈u〉 dx. (2.2)

From this it is clear that the effect of the fluctuations on the mean flow is contained in∫
R(u, u) : 〈u〉 dx. When this term is positive, the effect is dissipative and when negative

the effect is to increase energy in the mean flow.
Theorem 2.3 (Variance Evolution). The variance of strong solutions of the NSE

evolves according to

1

2
V (u(T )) +

∫ T

0

νV (∇u(t))dt =
1

2
V (u(0)) +

∫ T

0

(∫
Ω

R(u, u) : 〈u〉 dx
)
dt. (2.3)

Proof. The energy equality for strong solutions of each realization of the NSE is

1

2
||uj(T )||2 +

∫ T

0

ν||∇uj ||2dt =
1

2
||uj(0)||2 +

∫ T

0

(f(x, t), uj) dt.

Taking the ensemble average of this gives

1

2

〈
||uj(T )||2

〉
+

∫ T

0

ν
〈
||∇uj ||2

〉
dt =

1

2

〈
||uj(0)||2

〉
+

∫ T

0

(f(x, t), 〈uj〉) dt.

Subtract from this the time integral of the equation (2.2). This yields the claimed equation
for evolution of variance.

One consequence of the variance evolution equation is a simple proof of the Boussinesq
assumption that turbulent fluctuations (defined by ensemble averaging) are dissipative on
the mean flow in a mean sense. See [29] for connections to phenomenology. When the
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means (and thus fluctuations) are defined by long time averaging, a proof of the Boussinesq
assumption has been given by Chacon-Rebollo and Lewandowski [5].

Corollary 2.4 (Boussinesq assumption in both 2d and 3d). Assume f(x, t) ∈ L∞(0,∞;
L2(Ω)). For strong solutions of the NSE we have

lim inf
T→∞

1

T

∫ T

0

(∫
Ω

R(u, u) : 〈u〉 dx
)
dt = lim inf

T→∞

1

T

∫ T

0

ν
〈
||∇u′j ||2

〉
≥ 0.

Proof. For the proof we note that a standard estimate shows that each solution is
uniformly bounded uj ∈ L∞(0,∞;L2(Ω)). Thus, V (u) ∈ L∞(0,∞). Dividing (2.3) by T
we have

1

2

1

T
V (u(T )) +

1

T

∫ T

0

νV (∇u(t))dt =
1

2

1

T
V (u(0)) +

1

T

∫ T

0

(∫
Ω

R(u, u) : 〈u〉 dx
)
dt.

As T →∞ this is

O
(

1

T

)
+

1

T

∫ T

0

ν
〈
||∇u′j ||2

〉
dt = O

(
1

T

)
+

1

T

∫ T

0

(∫
Ω

R(u, u) : 〈u〉 dx
)
dt.

The claimed result now follows.
This shows that on (time) average, the action of the Reynolds stresses / fluctuations in

the NSE in both 2d and 3d (in bounded domains) is
• To dissipate energy in the mean flow 〈u〉 .
• To act as an energy source to the variance evolution equation (2.3) and thus increase

variance.
From this analysis, we also see that in a conventional turbulence model the fluctuations

should damp both the mean flow and its variance evolution (to approach statistical equilib-
rium). (In contrast, in a large eddy simulation model, not considered herein, it should on
average damp the mean flow but act as a diminished energy source to the model variance
equation.)

Remark 2.5. There are still important open questions concerning the generality of the
Boussinesq assumption. In case where means are defined by time averages (see [5]), it is
an open question when f = f(x, t) and there are questions about whether some version of
the result could hold independent of choice of subsequences. When averages are defined by
ensemble averaging, [29], the above proof holds when f = f(x, t) but not when f = fj(x, t).
Extending the above results to weak solutions is also an open problem.

3. Derivation of the Realization Equation. Consider an ensemble, uj , pj , of solu-
tions of the Navier-Stokes equations (NSE) in a regular domain in Rd, d = (2, 3) :

uj,t + uj · ∇uj − ν4uj +∇pj = fj(x, t), in Ω, j = 1, ..., J, (ENSE)

∇ · uj = 0, and uj(x, 0) = u0
j (x), in Ω and uj = 0, on ∂Ω.

If a direct numerical simulation of the NSE were possible, (ENSE) could be solved then
averaged to obtain k′ for (1.1). Naturally, this is infeasible in many cases. We thus seek
stabilized realization equations with the correct ensemble average (1.1) . Define the ensemble
mean 〈u〉, fluctuation u′j , its magnitude |u′| and the induced kinetic energy density k′ by

〈u〉 :=
1

J

J∑
j=1

uj , u′j := uj − 〈u〉 ,

|u′|2 :=

J∑
j=1

|u′j |2 and k′(x, t) =
1

2
|u′|2(x, t).

4



There are a number of ways to choose the mixing length l including the common choice
l = 4x, the mesh width. In [19], an alternative mixing length

l = distance a fluctuating eddy travels in one time step = |u′|4t,

yielded better flow predictions, better stability and l(x)→ 0 correctly as x→ walls. Thus,
take

l = |u′|4t.

Taking the ensemble average of (ENSE) gives

〈u〉t + 〈u〉 · ∇ 〈u〉 − ν4〈u〉+∇ ·R(u, u) +∇〈p〉 = 〈f〉 . (3.1)

EV models result from replacing the Reynolds stress term by the eddy viscosity term.
Thus, we solve a feasible variation on (ENSE) which, upon ensemble averaging, yields

the correct EV model (1.1) above. Adding, a yet to be determined, ∇ ·Qj to (ENSE) gives

uj,t + uj · ∇uj − ν4uj +∇ ·Qj +∇pj = fj(x, t). (3.2)

Taking the ensemble average of the perturbed equation and rearranging gives

〈u〉t + 〈u〉 · ∇ 〈u〉 − ν4〈u〉+∇ · 〈Q〉 − ∇ ·R(u, u) +∇〈q〉 = 〈f(x, t)〉 . (3.3)

Comparing (3.3) and (1.1), we must have (model terms incorporated in the pressure)

〈Q〉 = 〈u〉 〈u〉 − 〈uu〉 − νT (l, k′)∇〈u〉 , or

Qj = Term1− ujuj − νT (l, k′)∇uj where < Term1 >= 〈u〉 〈u〉 .

The three natural choices for Term1 (all worthy of study) that satisfy < Term1 > = 〈u〉 〈u〉
are Term1=〈u〉 〈u〉, uj 〈u〉 and 〈u〉uj . These yield

Qj = 〈u〉 〈u〉 − ujuj − νT (l, k′)∇uj ,
Qj = uj 〈u〉 − ujuj − νT (l, k′)∇uj , and

Qj = 〈u〉uj − ujuj − νT (l, k′)∇uj .

Combinations of these three possibilities also satisfy < Term1 > =〈u〉 〈u〉. We select the
third, Leray inspired, [21], [22], for testing the realization equation

uj,t + 〈u〉 · ∇uj −∇ · ([ν + νT (l, k′)]∇uj) +∇pj = fj(x, t). (3.4)

This is an ensemble-Leray regularization with an eddy viscosity term. Experience with both
Leray regularizations (proven robust in computations when the average is smoothing, e.g.,
[13]) and eddy viscosity models suggests that this realization equation is computationally
feasible. The analysis in Section 4 supports this conclusion.

Remark 3.1. Adding eddy viscosity to all equations, studied in [19], leads to the real-
ization equation

uj,t + uj · ∇uj −∇ · ([ν + νT (l, k′)]∇uj) +∇pj = fj(x, t). (3.5)

Taking the ensemble average of the (3.5) gives

〈u〉t + 〈u〉 · ∇ 〈u〉 − ν4〈u〉+∇〈q〉
+∇ ·R(u, u)−∇ · (νT (l, k′)∇〈u〉) = 〈f(x, t)〉 ,

containing both the Reynolds stresses and the EV term. Thus, in (3.5), EV is a numerical
regularization and not a closure model since it does not replace the Reynolds stresses.
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Analysis. The realization equation (3.4) contains two new effects: the eddy viscosity term
and the advection with correlated advecting velocity (i.e., replacing uj · ∇uj by 〈u〉 · ∇uj).
Before studying their combination we analyze the effect of the latter alone.

Therefore let ui, uj be two solutions of

ut + 〈u〉 · ∇u− ν4u+∇p = f, ∇ · u = 0. (3.6)

subject to the boundary and initial conditions of (ENSE). We prove that the above ensemble
Leray regularization suffices to squeeze trajectories together and accelerate convergence to
statistical equilibrium.

Proposition 3.2. Let ui, uj be weak solutions to (3.6). If fi = fj then

‖ui(t)− uj(t)‖2 ≤ e−νt‖ui(0)− uj(0)‖2.

If ‖fi − fj‖2−1(t)→ 0 as t→∞ then ‖ui − uj‖ → 0 as t→∞.
Proof. φ = ui − uj satisfies φt + 〈u〉 · ∇φ− ν4φ+ q = fi − fj , q = pi − pj . Taking the

L2 inner product with φ yields

d

dt

1

2
‖φ‖2 + ν‖∇φ‖2 ≤ (fi − fj , φ) ≤ ν

2
‖∇φ‖2 +

1

2ν
‖fi − fj‖2−1.

By the Poincaré-Friedrichs inequality and using an integrating factor we obtain:

‖φ(t)‖2 ≤ e−νt‖φ(0)‖2 + ν−1

∫ t

0

e−ν(t−s)‖fi − fj‖2−1(s)ds.

If fi − fj ≡ 0, the first claim follows immediately. For the second, let ε > 0 be given. For
δ > 0 let τ be large enough that ‖fi(t)− fj(t)‖2−1 < δ for t ≥ τ . Then

‖φ(t)‖2 ≤ e−νt‖φ(0)‖2 + ν−1

∫ τ

0

eν(s−t)‖fi − fj‖2−1ds+ ν−1

∫ t

τ

eν(s−t)δds.

The first term is < ε/3 for t large enough as is the second term. The third term is bounded
by δ 2

ν2 , which is also < ε/3 for δ small enough. Thus ‖φ(t)‖2 → 0, as claimed.

4. Methods and Stability. In this section, we study the first order method (1.4) and
give a second order method for the realization equation (1.2) and prove their unconditional,
long-time, nonlinear stability. The proof of stability is independent of any special techniques
for spacial discretization. Thus the spacial discretization will be suppressed and the methods
and analysis given for the continuous space, discrete time context. Extension to discrete
space adds only notational complexity.

We use standard notation for Lebesgue and Sobolev spaces and their norms. Let ‖ · ‖
and (·, ·) be the L2(Ω) norm and the inner product, respectively. The Lp(Ω) norm and the
Sobolev W k

p (Ω) norm are represented by ‖ · ‖Lp and ‖ · ‖Wk
p

. Hk(Ω) is the Sobolev space

W k
2 (Ω), with norm ‖ · ‖k.

4.1. The First Order Method. Let tn := n∆t, n = 0, 1, 2, ..., N , and T := N∆t.
Denote unj = uj(t

n), j = 1, ..., J . The first order time accurate method is: Given unj , find

un+1
j , pn+1

j satisfying

un+1
j − unj

∆t
+ 〈u〉n · ∇un+1

j +∇pn+1
j (4.1)

−ν∆un+1
j −∇ · (2νT (ln, k′n)∇sun+1

j ) = fn+1
j in Ω,

where νT (ln, k′n) = µ|u′n|ln and ln = |u′n|∆t,
∇ · un+1

j = 0, and u0
j (x) = u0

j in Ω, un+1
j = 0, on ∂Ω
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After spacial discretization, every time step of (4.1) requires the solution of a block linear
system like (1.3) with shared coefficient matrix.

We prove unconditional stability of (4.1).
Theorem 4.1 (Stability of the first order method). The first order method (4.1) is

unconditionally stable

||uNj ||2 +

N−1∑
n=0

(
||un+1

j − unj ||2 +4t
∫

Ω

[ν + νT (ln, k′n)]|∇un+1
j |2dx

)
(4.2)

≤ ||u0
j ||2 +

4t
ν

N−1∑
n=0

‖fn+1
j ‖2−1.

The ensemble average is also similarly stable:

|| 〈u〉N ||2 +

N−1∑
n=0

(
|| 〈u〉n+1 − 〈u〉n ||2 +4t

∫
Ω

[ν + νT (ln, k′n)]|∇ 〈u〉n+1 |2dx
)

≤ || 〈u〉0 ||2 +
4t
ν

N−1∑
n=0

‖ 〈f〉n+1 ‖2−1. (4.3)

Proof. We take the L2 inner product of the first equation of (4.1) with un+1
j , the

second equation with pn+1
j , add and multiply by 24t. Using skew symmetry

∫
Ω
〈u〉n ·

∇un+1
j .un+1

j dx = 0, the polarization identity for (unj , u
n+1
j ) in the time difference term and

integrating by parts the two viscosity terms gives

||un+1
j ||2 − ||unj ||2 + ||un+1

j − unj ||2 + 24t
∫

Ω

[ν + νT (ln, k′n)]|∇un+1
j |2dx (4.4)

= 24t
(
fn+1
j , un+1

j

)
.

Applying Young’s inequality to the right hand side

||un+1
j ||2 − ||unj ||2 + ||un+1

j − unj ||2

+4t
∫

Ω

[ν + 2νT (ln, k′n)]|∇un+1
j |2dx ≤ 4t

ν
‖fn+1
j ‖2−1.

Long-time stability of the realization thus follows. For (4.3), ensemble average (4.1) (giving
(1.1)), then, repeat the proof.

The two energy inequalities (4.2), (4.3) are key steps for establishing convergence to
statistical equilibrium.

Proposition 4.2 (Variance Evolution of the First Order Method). Suppose in (4.1)
fj ≡ f . The variance of solutions to (4.1) evolves according to

V (uN ) +

N−1∑
n=0

{
V (un+1 − un) (4.5)

+∆t

∫
Ω

[ν + νT (ln, k′n)]
〈
|∇u′n+1

j |2
〉
dx
}

= V (u0).

Proof. Take the ensemble average of (4.4) and of the analogous step in the energy
estimate for ‖ < u >N ‖ then subtract to obtain variance evolution. Note that since fj ≡ f ,
the RHS cancel: 〈

2∆t(fn+1, un+1
j )

〉
− 2∆t(fn+1,

〈
un+1
j

〉
) ≡ 0.
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We then have

V (un+1)− V (un) + V (un+1 − un)

+∆t

∫
Ω

[ν + νT (ln, k′n)]
〈
|∇u′n+1

j |2
〉
dx = 0.

Summing from n = 0 to N − 1 gives the result.
This proposition has several important consequences. In particular, we conclude that

when fj ≡ f ∈ L∞(0,∞;L2(Ω)), V (uN )→ 0 as tN →∞.
Proposition 4.3. In (4.1) let fj ≡ f ∈ L∞(0,∞;L2(Ω)). Then, as tN →∞

V (uN+1 − uN )→ 0,

V (∇uN )→ 0,∫
Ω

νT (lN , k′N )
〈
|∇u′N+1

j |2
〉
dx→ 0.

Proof. Each term in (4.5) is nonnegative and the RHS is independent of N . Letting
N →∞ we conclude that the infinite series (with nonnegative terms) below converges

∞∑
n=0

{
V (un+1 − un) + ∆tνV (∇un+1) + ∆t

∫
Ω

νT (ln, k′n)
〈
|∇u′n+1

j |2
〉
dx
}
<∞.

Thus, the N th term must → 0 as N →∞ and the proposition follows.
Remark 4.4. For the proofs to hold in the discrete space case requires the two viscosity

terms to yield SPD matrices (i.e., be dissipative under discretization) and the discrete non-
linear term to be skew symmetric (i.e., conservative) or nonnegative (i.e., add numerical
dissipation via some upwinding).

4.2. The Second Order Method. The second order time accurate method for (1.2)
is a combination of BDF2 and an interpretation of AB2 for the nonlinear term. The second
order accurate method is as follows: Given un−1

j , unj , find un+1
j , pn+1

j satisfying

3un+1
j − 4unj + un−1

j

2∆t
+
(

2 〈u〉n − 〈u〉n−1
)
· ∇un+1

j +∇pn+1
j (4.6)

−ν4un+1
j −∇ ·

(
ν̃T (ln, k′n)∇sun+1

j

)
= fn+1

j in Ω,

where ν̃T (ln, k′n) = µ|2u′n − u′n−1|ln and ln = |2u′n − u′n−1|∆t,
∇ · un+1

j = 0, and u0
j (x) = u0

j in Ω, un+1
j = 0, on ∂Ω.

This is a 3 level/2 step method. Thus an approximation to u1
j , p

1
j must be computed by

some other method, such as the first order method (4.1) above. Like the first order method,
it is unconditionally stable.

Theorem 4.5 (Stability of the second order method). The second order method (4.6)
is unconditionally, long-time, nonlinear stable: For any N > 1,

1

4
‖uNj ‖2 +

1

4
‖2uNj − uN−1

j ‖2 +

N−1∑
n=1

1

4
‖un+1

j − 2unj + un−1
j ‖2

+∆t

N−1∑
n=1

∫
Ω

ν̃T (ln, k′n)|∇un+1
j |2dx+

∆t

2

N−1∑
n=1

ν‖∇un+1
j ‖2

≤
N−1∑
n=1

∆t

2ν
‖fn+1
j ‖2−1 +

1

4
‖u1

j‖2 +
1

4
‖2u1

j − u0
j‖2 .

8



Proof. Take the L2 inner product of (4.6) with un+1
j , pn+1

j and add. Using skew-
symmetry of the nonlinear term, integrating by parts the two viscous terms, canceling the
pressure and incompressibility terms and multiplying through by ∆t yields:

1

4

(
‖un+1

j ‖2 + ‖2un+1
j − unj ‖2

)
− 1

4

(
‖unj ‖2 + ‖2unj − un−1

j ‖2
)

(4.7)

+
1

4
‖un+1

j − 2unj + un−1
j ‖2 +

∫
Ω

∆t (ν + ν̃T (ln, k′n)) |∇un+1
j |2dx

= ∆t
(
fn+1
j , un+1

j

)
.

Applying Young’s inequality to the right hand side gives

1

4

(
‖un+1

j ‖2 + ‖2un+1
j − unj ‖2

)
− 1

4

(
‖unj ‖2 + ‖2unj − un−1

j ‖2
)

+
1

4
‖un+1

j − 2unj + un−1
j ‖2 +

∫
Ω

∆t (ν + ν̃T (ln, k′n)) |∇un+1
j |2dx

≤ ν∆t

2
‖∇un+1

j ‖2 +
∆t

2ν
‖fn+1
j ‖2−1 .

Combining like terms yields

1

4

(
‖un+1

j ‖2 + ‖2un+1
j − unj ‖2

)
− 1

4

(
‖unj ‖2 + ‖2unj − un−1

j ‖2
)

(4.8)

+
1

4
‖un+1

j − 2unj + un−1
j ‖2 +

∫
Ω

∆t
(ν

2
+ ν̃T (ln, k′n)

)
|∇un+1

j |2dx ≤ ∆t

2ν
‖fn+1
j ‖2−1 .

Summing up (4.8) from n = 1 to N − 1 completes the proof.

The second order method also produces approximations that approach statistical equi-
librium (by Variance → 0) in the same sense as for the first order method.

Proposition 4.6 (Variance Evolution of Second Order Method). Suppose in (4.6)
fj ≡ f . The variance of solutions to (4.6) satisfies

V (uN ) + V (2uN − uN−1) +

N−1∑
n=1

{
V (un+1 − 2un + un−1) (4.9)

+4∆t

∫
Ω

(ν + ν̃T (ln, k′n))
〈
|∇u′n+1

j |2
〉
dx
}

= V (u1) + V (2u1 − u0).

Proof. The ensemble average of (4.7) and of the analogous step in the energy estimate

for ‖ 〈u〉N ‖ yields

V (un+1) + V (2un+1 − un)− V (un)− V (2un − un−1)

+V (un+1 − 2un − un−1) + 4∆t

∫
Ω

(ν + ν̃T (ln, k′n))
〈
|∇u′n+1

j |2
〉
dx = 0.

Summing from n = 1 to N − 1 gives the result.

Proposition 4.7. In (4.6) let fj ≡ f ∈ L∞(0,∞;L2(Ω)). Then, as tN →∞

V (uN+1 − 2uN + uN−1)→ 0,

V (∇uN )→ 0,∫
Ω

ν̃nT
〈
|∇u′N+1

j |2
〉
dx→ 0.

9



Proof. Note that each term in (4.9) is nonnegative and the RHS is independent of
N . Letting N → ∞ we conclude that the infinite series (with nonnegative terms) below
converges

∞∑
n=1

{
V (un+1 − 2un + un−1) + ∆tνV (∇un+1) + ∆t

∫
Ω

ν̃T (ln, k′n)
〈
|∇u′nj |2

〉
dx
}
<∞.

Thus, the N th term must → 0 as N →∞ and the proposition follows.

5. Numerical Experiments.

5.1. Comparing two realization equations. In this section, we investigate the dif-
ference between retaining and not retaining the fluctuating term u′j · ∇uj (equivalently,
retaining in the ensemble averaged equation both the Reynolds stresses and the eddy vis-
cosity or just the eddy viscosity). While these first tests are 2d2, they reveal differences
between ensemble numerical regularizations (retaining u′j ·∇uj) and turbulence models (not
retaining u′j · ∇uj).

Test Problem: flow between offset circles. Pick

Ω = {(x, y) : x2 + y2 ≤ r2
1 and (x− c1)2 + (y − c2)2 ≥ r2

2},

r1 = 1, r2 = 0.1, c = (c1, c2) = (
1

2
, 0),

f(x, y, t) = (−4y(1− x2 − y2), 4x(1− x2 − y2))T ,

with no-slip boundary conditions on both circles. The flow, driven by a counterclockwise
force (with f ≡ 0 at the outer circle), rotates about (0, 0) and interacts with the immersed
circle. This induces a von Kármán vortex street which interacts with the near wall streaks
common in turbulent flow and a central (“polar”) vortex. All three effects interact in a
pulsating fashion. We discretize in space using the usual finite element method with Taylor-
Hood elements, [30]. These choices satisfy the requirements for the stability theorems to
apply. The tests were performed using FreeFEM++, [16]. The mesh has n = 40 mesh points
around the outer circle and m = 10 mesh points around the immersed circle, and extended
to Ω as a Delaunay mesh.

Generation of the initial conditions. Initial conditions u0
j , j = 1, 2, and u0

0, are
generated by solving the steady Stokes problem with body forces

f(x, y, 0) + ε(sin(3πx)sin(3πy), cos(3πx)cos(3πy))T ,

taking ε = 10−3,−10−3 and 0. These initial conditions give u1, u2, uave = (u1 + u2)/2 and
u0 (initial condition u0

0 -‘no perturbation’). Thus we perturb the small scales rather than
generate bred vectors herein.

Comparing realization equations (3.4) vs (3.5)
We compare the stability of the two choices and test the relative size (residual) of the

extra term u′j · ∇uj . For stability, we choose a large time step and compute the kinetic
energy vs time and enstrophy vs time t over 0 ≤ t ≤ 10

Energy =
1

2
‖u‖2, Enstrophy =

1

2
ν‖∇ × u‖2.

The plots are given in Figures 5.1 and 5.2 below.
Comparing the cases in Figure 5.1 (energy) and 5.2 (enstrophy) we see that EV as a

turbulence model (the lower figure) produces fewer transient effects than adding EV as a
numerical regularization (the top figure). This is consistent with considering the methods
studied as conventional turbulence models.

2Bounded domains are not covered by the Batchelor-Leith-Kraichnan inverse cascade. On bounded 2d
domains under no-slip boundary conditions fluctuations have a dissipative effect on the mean flow (consistent
with an eddy viscosity model), Section 2 above, [28], [29], see also [31]. Thus, this test is sensible.
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With u′j · ∇uj
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Fig. 5.1. Energy, ν = 1/800, ∆t = 0.025.

The realization equation (1.2) (with nonlinear term 〈u〉 · ∇uj) is consistent with the
desired statistical turbulence model (1.1). However, as uj · ∇uj =< u > ·∇uj + u′j · ∇uj , it
is not a consistent approximation to the NSE as it omits u′j ·∇uj . We test the magnitude of
u′j ·∇uj . Next, the test investigates the relative size of the extra term u′j ·∇uj . We measure
the relative significance of both terms by computing over 0 ≤ t ≤ 10

Q1 =
〈
|| 〈u〉n · ∇un+1

j ||2
〉

, Q2 =
〈
||(unj − 〈u〉

n
) · ∇unj ||2

〉
,

Q3 =

〈
||(unj − 〈u〉

n
) · ∇unj ||2

〉〈
|| 〈u〉n · ∇un+1

j ||2
〉 .

Figure 5.3 plots the three vs time.
Figure 5.3 shows that the relative difference between the realization equations (3.4) and

(3.5) is a term that is smaller than 10−10. Nevertheless, the impact of the extra term on
the kinetic energy is O(1), Figure 5.1. Excluding u′ · ∇u, the energy and enstrophy closely
track the unperturbed flow (bottom Figure 5.1, 5.2).

We concluded from this first test that the term is small in magnitude but non-negligible
as its effects on the transient evolution of the flow.

5.2. Interrogation of Convergence to Statistical Equilibrium. One goal of a
conventional turbulence model is for its time evolution to very quickly converge to the
statistical equilibrium of the flow. We test this convergence by computing the averaged,
effective Lyapunov exponents (introduced by [3]) of the first order method. Negative expo-
nents imply exponential convergence to equilibrium.
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With u′j · ∇uj
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Fig. 5.2. Enstrophy, ν = 1/800, ∆t = 0.025.

Following [3], we define the relative energy fluctuation r(t) by

r(t) :=
‖u1 − u2‖2

‖u1‖‖u2‖
(t),

and the averaged, effective Lyapunov exponent γT (t) over 0 ≤ t ≤ T by

γT (t) :=
1

2T
log

(
r(t+ T )

r(t)

)
.

Here T is chosen to be the simulation time.
From figure 5.4 we see that around t = 2 the Lyapunov exponent became negative (and

stay negative thereafter), indicating squeezing of the trajectories, as predicted by the theory.
If the solution converges to steady state (physical equilibrium) then as d

dt 〈u〉 = 0 it must

be a solution of the steady NSE. At tn+1 = 10, we compute ‖ 〈u〉n+1 − 〈u〉n ‖ = 0.24256.
This shows the model is not at steady state. On the other hand, V (∇un+1) = 2.72848−12 at
tn+1 = 10, which is a clear evidence that the model has reached its statistical equilibrium.
This is consistent with the fact the statistically averaged mean flow can be unsteady, clearly
illustrated in Figure 5.12, page 102 in [8].

In order to visualize the evolution of the flow we plot vorticity contours of 〈u〉n in
Figure 5.5. To resolve the vortices around the inner circle, we compute on a finer mesh (still
relatively coarse) with 150 mesh points on the outer circle and with 75 mesh points on the
inner circle. Two apparent oppositely-rotating vortices shedding from the inner circle are
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Fig. 5.3. ν = 1/800, ∆t = 0.025, without u′j · ∇uj

observed at very early time (clear at t = 1, Figure 5.5). An animation of the flow also shows
many interesting features. The two oppositely-rotating vortices are shed and detach from
the inner circle periodically. On the other hand, the near wall streaks appear and disappear
in a pulsating fashion and also a central (“polar”) vortex appear and disappear. The eddies
are shed by the inner circle sometimes break up into streaks and sometimes are captured
by a large central vortex.
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Fig. 5.4. Averaged, effective Lyapunov exponent, ν = 1/800, ∆t = 0.01.
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Fig. 5.5. Vorticity, ν = 1/800, 4t = 0.01.

6. Conclusions and Open Questions. In fluid dynamics it is uncommon for nu-
merical tests to be unequivocal and not unknown for unequivocal tests to be incorrectly
interpreted. With this warning in mind, the initial tests suggest that the method (1.1)
functions as a very effective conventional turbulence model. Simply adding an EV term to
each NSE realization means including the u′j · ∇uj term, [19]. In this case, EV functions
as a numerical regularization. The theory and the (simple) tests herein show (Figures 5.1,
5.2, 5.4) that the solution remains much closer to the unperturbed solution and converges
to a time averaged statistical equilibrium. (Compare the Lyapunov exponents of the model
(1.1) in Figure 5.4 herein to those of the regularization, Figure 8 in [17].) Ensemble simu-
lations with different realization equations provide very effective numerical regularizations
and conventional turbulence models.

There are applications such as uncertainty quantification and sensitivity analysis in
which calculation of an ensemble of solutions is an essential step. With these applications,
developing turbulence models from the calculated ensemble is useful. Further, computing
the ensemble at reduced cost based on block methods is promising as well. The methods in
this report, as their next step, should be tested in more complex turbulent flow benchmark
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problems.
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