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Abstract. This report extends a recent method that calculates an ensemble
of solutions of the Navier-Stokes equations efficiently to higher Reynolds num-
ber flows. To do so herein we develop and analyze two ensemble eddy viscosity

models that do not obviate the good algorithmic properties of the ensemble
method. The combined approach of ensemble time stepping and ensemble
eddy viscosity modelling has other significant advantages. The form of the

ensemble algorithm allows a new (and more accurate) parameterization of the
turbulent viscosity coefficient that is more direct and gives an unconditionally
stable algorithm. It also suggests a new definition of the mixing length. This

new mixing length gives superior predictions of flows in our preliminary tests.

1. Introduction

In the numerical simulation of flows at higher Reynolds numbers (Re), incom-
plete data, quantification of uncertainty, increasing forecasting skill, quantification
of flow sensitivities and other issues, e.g., [6], [12], [25], [28], [30], [31], [37], lead
to the problem of computing ensembles, uj , pj , of solutions of the Navier-Stokes
equations (NSE):

uj,t + uj · ∇uj − ν△uj +∇pj = fj(x, t), in Ω, j = 1, ..., J(1.1)

∇ · uj = 0, and uj(x, 0) = u0
j (x), in Ω and uj = 0, on ∂Ω.

This leads to the competing demands of computing ensembles of solutions vs. the
high resolution required for reliable simulations, [16]. One approach is to run a flow
code J times in parallel, decreasing the available memory for each realization by a
factor of J . Another approach, when available memory is consumed by the required
resolution, is J sequentially runs, increasing turn-around time by a multiplier of
J . In [21] a third possibility was advanced with complementary advantages and
disadvantages of computing an ensemble of J solutions in one run. In this approach,
the storage of vectors (but not matrices) used by the code is increased by a multiplier
J . While the method is still relatively unexplored, storage required and turn around
times may be reduced substantially over the first two alternatives. Indeed, the
method (1.3) is linearly implicit. After spacial discretization, each time step requires
the solution of one linear system with the same, shared coefficient matrix for each
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ensemble member:

(1.2) A

[
u1

p1

∣∣∣∣
· · ·
· · ·

∣∣∣∣
uJ

pJ

]
= [RHS1 |· · ·|RHSJ ] .

This form allows the use of special projective, [9], or block iterative methods, e.g.,
[32], [10], [1], [8], [10], [11], [1] reducing the work required to advance in time1.

The method of [21] without any parametrizations of turbulence requires a timestep
condition C ∆t

ν△x‖∇u′‖2 ≤ 1 that begins mild but degrades quickly as Re increases

and fluctuations grow. This behavior has been reported for other methods, e.g.
[26], and is exactly as expected for a method not incorporating a turbulence model.
Herein, we extend (and analyze) the method to include two new ensemble eddy
viscosity (EEV) type turbulence models with turbulent viscosity parametrizations

EEV1: νT = µ1△x|u′|, and

EEV2: νT = µ2|u′|2△t.

These are based on direct parameterization of the energy in the turbulent fluctua-
tions, 1

2 |u′|2 and developed in Section 3. We also give, using the ensemble algorithm,
a redefinition of the LES lengthscale from (the usual) l = △x to

l = distance a fluctuating eddy travels in one time step = |u ′|△t .

Our preliminary tests indicate that this change results in a model that is more
stable numerically and less likely to over-diffuse the flow.

The precise analytical understanding of how the additional EEV term affects
stability of the ensemble computation is an essential step in the development of
the ensemble methods. The analysis in Section 4 delineates its positive effect;
Algorithm (1.3) with EEV2 can be unconditionally stable, Theorem 1, Section 4.

1.1. Methods and Models. The euclidean length of a vector and Frobenius norm
of an array is | · |. The symmetric part of the velocity gradient tensor is denoted
∇s. The ensemble mean < u >, fluctuation u′

j , its magnitude |u′| and the induced
kinetic energy density k′ are

mean: < u >:=
1

J

J∑

j=1

uj , fluctuation: u′
j := uj− < u > ,

|u′|2 :=

J∑

j=1

|u′
j |2 and energy density: k′ =

1

2
|u′|2(x, t).

To present the method, suppress the secondary spacial discretization and let super-
scripts denote the timestep number. Thus, for example, < u >n, u′n

j denote respec-

tively approximations to 1
J

∑J
j=1 uj(·, tn) and uj(·, tn)− < u >n where tn := n△t.

Consider the method: for j = 1, ..., J, ∇ · un+1
j = 0, and

1To have a fixed matrix A (not changing from one time step to the next) would require lagging

the entire nonlinear term. Since Re ≃ |Nonlinear term| / |Viscous term|, requiring the viscous
term alone to control the lagged (and dominant as Re increases) nonlinear term leads to a severe
time step restriction, [26].
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un+1
j − un

j

∆t
+ < u >n ·∇un+1

j + (un
j − < u >n) · ∇un

j(1.3)

+∇pn+1
j − ν∆un+1

j −∇ · (νT (ln, k′n)∇sun+1
j ) = fn+1

j .

The ensemble eddy viscosity parameterization is the coefficient νT (·). Briefly, the
Kolmogorov-Prandtl relation gives

νT (·)=Const.l
√
k′

l = mixing length of fluctuations,

k′ = kinetic energy in fluctuations.

Often extensive (and optimistic) modelling steps are needed to generate repre-
sentations of these two quantities, e.g., [34], [29]. Algorithm (1.3) allows direct
calculation of both:

k′ =
1

2
|u′|2 and l =

{
either △x,
or |u′|△t

.

2. Notation and preliminaries

Let Ω be an open, regular domain in R
d (d = 2 or 3). The L2(Ω) norm and the

inner product are ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k
p (Ω)

norms are ‖ · ‖Lp and ‖ · ‖Wk
p
respectively. Hk(Ω) is the Sobolev space W k

2 (Ω), with

norm ‖ · ‖k. Let X,Q, V denote the velocity, pressure and divergence free velocity
spaces:

X := (H1
0 (Ω))

d, Q := L2
0(Ω),

V := {v ∈ X : (∇ · v, q) = 0 , ∀q ∈ Q}.

For v ∈ X the usual H1/2(Ω) norm satisfies the interpolation inequality

‖v‖1/2 ≤ C
√
‖v‖‖∇v‖.

A weak formulation of (1.1) is: Find uj : [0, T ] → X, pj : [0, T ] → Q satisfying, for
j = 1, ..., J :

(uj,t, v) + (uj · ∇uj , v) + ν(∇uj ,∇v)− (pj ,∇ · v) = (fj , v) , ∀v ∈ X

uj(x, 0) = u0
j (x) in X and (∇ · uj , q) = 0, ∀q ∈ Q.

Define b(u, v, w) = (u ·∇v, w) and b∗(u, v, w) := 1
2 (u ·∇v, w)− 1

2 (u ·∇w, v). By the
divergence theorem

(2.1) b∗(u, v, w) =

∫

Ω

u · ∇v · w dx+
1

2

∫

Ω

(∇ · u)(v · w) dx

Both b(·, ·, ·) and b∗(·, ·, ·) satisfy: in both 3d and 2d (improvable in 2d)

|b(u, v, w)| and |b∗(u, v, w)| ≤ C(Ω)‖u‖1/2‖∇v‖‖∇w‖.

C represents a positive constant independent of ν, the solution u, the time step ∆t
and the mesh width h. Its value may vary from situation to situation.
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2.1. Finite Element Notation, Spaces and Formulation. Conforming veloc-
ity, pressure finite element spaces based on an edge to edge triangulation of Ω (with
maximum triangle diameter h) are denoted

Xh ⊂ X = (H1
0 (Ω))

d, Qh ⊂ Q = L2
0(Ω).

We assume that Xh and Qh satisfy the usual discrete inf-sup condition. Taylor-
Hood elements, e.g., [5], [13], are one choice used in the test in Section 6. The
discretely divergence free subspace of Xh is

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 , ∀qh ∈ Qh}.

We assume finite element spaces satisfy standard inequalities (typical for quasi-
uniform meshes, e.g., [5]), including: for all vh ∈ Xh and all elements e (with
diameter he and minimum angle θe)

he‖∇vh‖L2(e) ≤ C(θe)‖vh‖L2(e),(Inverse Ineq)

‖vh‖L∞(Ω) ≤ C| lnh|1/2‖∇vh‖, in dimension d = 2.(Discrete Sobolev)

3. Ensemble Eddy Viscosity

The full development of EV models begins with local, spacial averaging followed
by identifying the sub-filter scale stresses then replacing them by a term acting on
the mean flow based on the eddy viscosity hypothesis / Boussinesq assumption that
turbulent fluctuations are dissipative in the mean. These steps, carefully developed
in, e.g., [3], [20], [22], [34], lead to an additional additive EV term:

−∇ · (2νT (·)∇suj).

Since EV envisions turbulent fluctuations effects on the mean flow as a mixing
process, νT (·) must increase as the local kinetic energy density in the fluctuations
increases. Phenomenology gives the Kolmogorov-Prandtl relation

νT = νT (l, k
′) = µl

√
k′

l = characteristic length scale of fluctuations,

k′ = kinetic energy of the fluctuations,

or any dimensionally consistent relation involving the same variables.
Within the ensemble algorithm, the fluctuations about the mean can be directly

computed rather than modelled. Accordingly, we take

k′ =

J∑

j=1

1

2
|u′

j |2 :=
1

2
|u′|2.

For the characteristic length scale there are two natural and dimensionally correct
choices:

l1 = △x, after space discretization,

l2 = |u′|△t, for the considered time discretization.

The second relation, l2 = |u′|△t, expressed that the characteristic length of turbu-
lent fluctuations is the distance they travel in one time step. We shall thus consider
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the parametrizations induced by these two length scales

EEV1: νT = µ1△x|u′|, and

EEV2: νT = µ2|u′|2△t.

The mechanically correct form of the EEV above is in terms of the deformation
tensor ∇suj . Since ∇ · uj = 0, this form is mathematically equivalent to one with
the full gradient given by

−∇ · (νT (l, k′)∇uj).

This form is also cheaper to implement in many codes. We shall therefore develop
our theory for this latter form.

Ensemble averages equation: Taking the ensemble average of (1.3) gives a
consistent discretization of the ensemble averaged NSE: ∇· < u >n+1= 0 and

< u >n+1 − < u >n

∆t
+ < u >n ·∇ < u >n+1 +

+
[
< un

j · ∇un
j > − < u >n ·∇ < u >n

]

+∇ < p >n+1 −ν∆ < u >n+1 −∇ · (νT (ln, k′n)∇ < u >n+1) =< f >n+1 .

The term in brackets is the usual Reynolds stress term.

3.1. Other ensemble eddy viscosity models. We begin herein with simple and
direct (while possibly not the most advanced) eddy viscosities. Others are possible;
for example, parametrizations dimensionally consistent with EEV1&2, such as the
following, are also consistent with the Kolmogorov-Prandtl relation:

νT = µ△x2|∇su′| , µ|u′||∇su′|△x△t , and µ|∇su′|2△t△x2.

Variational Multiscale Ensemble Eddy Viscosity. Variational multiscale
methods (e.g., [19]) have proven to be powerful tools for turbulent flow simula-
tions. The EEV parametrizations can be extended to ensemble variational multi-
scale models by

−∇ · (νT (l, k′)∇s[un+1
j − < u >n+1]).

This form preserves attractive features of the solution strategy. To be precise,
consider the method: ∇ · un+1

j = 0, and

un+1
j − un

j

∆t
+ < u >n ·∇un+1

j + (un
j − < u >n) · ∇un

j +∇pn+1
j

−ν∆un+1
j −∇ · (νT (l, k′)∇s[un+1

j − < u>n+1]) = fn+1
j .

The linear system for the new time level takes the form

A0

[
un+1
j

pn+1
j

]
+A1

[
1
J

∑J
j=1 u

n+1
j

1
J

∑J
j=1 p

n+1
j

]
= RHSj , j = 1, · · ·, J,

where the matrices A0/1 are independent of j (but depend on the timestep number

n). Writing this as a coupled system for un+1
j , it becomes a fully coupled, block

J × J system. To uncouple the system, solve for first <u>n+1 and then u′n+1
j =

un+1
j − < u >n+1. Note that

< ∇ · (νT (l, k′)∇s[un+1
j − < u >n+1]) > =

∇ · (νT (l, k′)∇s[< un+1
j > − < u >n+1]) = 0.
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Taking the ensemble mean thus eliminates the coupling:

A0

[
< u >n+1

< p >n+1

]
=< RHSj > .

Subtracting shows that the fluctuations satisfy: for j = 1, · · ·, J

A0

[
u′n+1
j

p′n+1
j

]
= RHSj− < RHSj > −A1

[
< u >n+1

< p >n+1

]
.

The solution procedure then consists of one linear system with coefficient matrix
A0 followed by J linear systems with A0 as common coefficient matrix.

4. Stability of the Ensemble Eddy Viscosity Algorithm

Many spacial discretizations are used for flow problems. Thus we shall begin by
studying stability of the discrete time, continuous space approximation which can
be implemented by any common space discretization. Consider (1.3) where νT is
given by

EEV1: νT = µ1△x|u′|, or(4.1)

EEV2: νT = µ2|u′|2△t.

The stability analysis of Theorems 1− 4 below is based on energy methods (and
without Gronwall’s inequality). Thus it yields global, nonlinear, long time stability.

For each variant we take
∑J

j=1

∫
Ω
Method · un+1

j dx and arrive at

En+1 − En +△t[Dn+1 −Nn+1] = △tPn+1,

where, at the indicated time, E = system energy, D = rate of viscous, numerical
and eddy viscosity dissipation, N = nonlinear term, and P = energy input through
body force - flow interactions. Long time, nonlinear stability thus follows provided
Dn+1 ≥ Nn+1. The key step in the proofs will be to show the following, which
suffices for stability,

∫

Ω

{
2[ν + νT (l

n, k′n)]|∇un+1
j |2 −△t|u′n

j |2|∇un+1
j |2

}
dx ≥ 0.

One striking result is unconditional stability for EEV2 when µ2 ≥ 1/2, Theorem 1.
In the spatially discrete case, stability requires control of ||∇ · un+1||, Theorem 3.
For EEV1, stability requires more: either an Re dependent timestep condition or
a local timestep condition, Theorems 2, 4 and 5.

The case of EEV2: νT = µ2|u′|2△t.

Theorem 1 (Unconditional Stability of EEV2). The method (1.3) with EEV2
νT = µ2|u′|2△t is unconditionally, nonlinearly, long time stable (even for ν = 0) if

(4.2) µ2 ≥ 1

2
,

or if

(4.3)
△t|u′n

j |2
2ν

≤ 1,

or if, for some θ, 0 ≤ θ ≤ 1, the timestep condition holds:

(4.4) µ2 ≥ θ

2
, and (1− θ)

△t|u′n
j |2

2ν
≤ 1.
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Proof. Take the inner product of the equation with un+1
j . Multiplying by 2△t,

using skew symmetry of the first nonlinear term and the polarization identity in
the time difference term. This yields

||un+1
j ||2 − ||un

j ||2 + ||un+1
j − un

j ||2 + 2△t
(
(un

j − < u >n) · ∇un
j , u

n+1
j

)
+

+2△t

∫

Ω

[ν + νT (l
n, k′n)]|∇un+1

j |2dx = 2△t
(
fn+1
j , un+1

j

)
.

By skew symmetry we have
(
(un

j − < u >n) · ∇un
j , u

n+1
j

)
=

(
(un

j − < u >n) · ∇un
j , u

n+1
j − un

j

)
=

=
(
(un

j − < u >n) · ∇[un
j + un+1

j − un
j ], u

n+1
j − un

j

)

=
(
(un

j − < u >n) · ∇un+1
j , un+1

j − un
j

)
.

Nonlinear, long time stability thus follows provided

||un+1
j − un

j ||2 + 2△t

∫

Ω

[ν + νT (l
n, k′n)]|∇un+1

j |2dx+

+2△t
(
(un

j − < u >n) · ∇un+1
j , un+1

j − un
j

)
≥ 0.

The first two terms are nonnegative and the third can have two signs. We thus
consider the third term. We have

2△t
∣∣((un

j − < u >n) · ∇un+1
j , un+1

j − un
j

)∣∣ ≤ ||un+1
j −un

j ||2+△t2
∫

Ω

|u′n
j |2|∇un+1

j |2dx.

Using this as a worst case bound for the third term gives the sufficient condition∫

Ω

{
2[ν + νT (l

n, k′n)]|∇un+1
j |2 −△t|u′n

j |2|∇un+1
j |2

}
dx ≥ 0.

With the EV parameterization νT = µ2|u′|2△t, this becomes
∫

Ω

[2ν +△t
(
2µ2|u′n|2 − |u′n

j |2
)
]|∇un+1

j |2dx ≥ 0,

from which the first stability result follows when µ2 ≥ 1
2 , i.e., (4.2). For the second

condition (4.3), noting that it makes no reference to the eddy viscosity term, sta-
bility under the second condition follows by absorbing the term △t|u′|2|∇u|2 in the
viscous term 2ν|∇u|2 similarly. The third condition (4.4) is a simple combination
of the first two.

The case of EEV1: νT = µ1△x|u′|. Following the proof of Theorem 1
and solving a quadratic inequality gives the following pointwise CFL condition for
EEV1.

Theorem 2 (Conditional stability of EEV1). Consider (1.3) with the parameteri-
zation

EEV1: νT = µ1△x|u′|.
A sufficient condition for stability is that there holds pointwise

(4.5)
△t|u′(x, tn)|

△x
≤ 1

2
µ1 +

√(
1

2
µ1

)2

+
ν△t

△x2
.

This is implied by the two special cases

(4.6)
△t|u′(x, tn)|

△x
≤ µ1, or

△t|u′(x, tn)|2
ν

≤ 1.
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Proof. The proof for EEV2 was independent of the particular EEV parameteriza-
tion until the last step. Inserting EEV1 gives the sufficient condition∫

Ω

[2ν +
(
2µ1△x|u′| − △t|u′n

j |2
)
]|∇un+1

j |2dx ≥ 0.

A sufficient condition for this is that the quadratic form [2ν+
(
2µ1△x|u′n| − △t|u′n|2

)
] ≥

0. Let

s =
△t|u′n|
2△x

≥ 0.

By rescaling, the following condition suffices for stability

ν + 2µ1
△x2

△t
s− 2

△x2

△t
s2 ≥ 0.

The first stability condition (4.5) follows by solving the quadratic inequality. The
second condition (4.6) follow by dropping terms in the RHS.

5. Stability : Discrete Space and Time

This section analyzes stability under spacial discretization by finite element
methods; extension to other methods is both interesting and important. There
are two essential deviations from the spatially continuous case. First, new options
are available for analysis of stability: since the FEM spaces are finite dimensional,
norm equivalence tools can be used and lead to CFL type timestep conditions
involving the ratio △t/△x. Second, since common FEM velocity spaces are not ex-
actly divergence free, new restrictions depending on the size of ||∇·uh|| emerge from
the nonlinear term. These are not active for Fourier spectral methods when using
divergence free FEM spaces and suggest further study of the methods with grad-
div stabilization, e.g., [33], [7], added. Similarly to the analysis in [27], these terms
occur here from the nonlinearity rather than from the pressure-incompressibility
coupling.

Since all velocities and pressures in this section are discrete we drop subscripts
”h” on discrete velocities and pressures to simplify notation. The usual (no extra
stabilization) fully discrete EEV FEM is: Given un

j , find un+1
j ∈ Xh, p

n+1
j ∈ Qh

satisfying

(
un+1
j − un

j

∆t
, v) + b∗(< u >n, un+1

j , v) + b∗(un
j − < u >n, un

j , v)

−(pn+1
j ,∇ · v) + ([ν + νnT ]∇un+1

j ,∇v) = (fn+1
j , v), ∀v ∈ Xh,(5.1)

(∇ · un+1
j , q) = 0, ∀q ∈ Qh,

uj(0) ∈ Xh given.

Theorem 3 (Stability). The method (5.1) with the parameterization EEV2, νT =
µ2△t|u′|2, is nonlinearly, long time stable if, for some θ and α, 0 ≤ θ ≤ 1, 0 <
α < 1, the timestep condition holds,

(5.2) θν + 2∆t(µ2 −
1

2α
)|u′n

j | ≥ 0 and (1− θ)ν − C

4(1− α)
∆t‖∇ · u′n

j ‖2L4 ≥ 0.

In particular, stability follows if

∇ · u′n
j = 0 and µ2 >

1

2
.
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Proof. We follow the proof of Theorem 1 to the divergence point. Set v = un+1
j ,

q = pn+1
j and multiply by 2△t. Using skew symmetry of b∗(< u >n, un+1

j , v) and

the polarization identity in (un
j , u

n+1
j ) in the time difference term gives

||un+1
j ||2 − ||un

j ||2 + ||un+1
j − un

j ||2 + 2△tb∗
(
u′n
j , un+1

j , un+1
j − un

j

)
+

+2△t

∫

Ω

[ν + νT (l
n, k′n)]|∇un+1

j |2dx = 2△t
(
fn+1
j , un+1

j

)
.

Applying Young’s inequality to the right hand side gives

||un+1
j ||2 − ||un

j ||2 + ||un+1
j − un

j ||2 + 2△tb∗
(
u′n
j , un+1

j , un+1
j − un

j

)
+

+△t

∫

Ω

[ν + 2νT (l
n, k′n)]|∇un+1

j |2dx ≤ △t

ν
‖fn+1

j ‖2∗.

Using (2.1),

2△tb∗
(
u′n
j , un+1

j , un+1
j − un

j

)
=

2△t
(
u′n
j · ∇un+1

j , un+1
j − un

j

)
+△t

(
∇ · u′n

j , un+1
j · (un+1

j − un
j )
)
.

For the two terms on the above RHS we have, for any 0 < α < 1,

(Term 1) 2△t
∣∣(u′n

j · ∇un+1
j , un+1

j − un
j

)∣∣ ≤

≤ α‖un+1
j − un

j ‖2 +
△t2

α

∫

Ω

|u′n
j |2|∇un+1

j |2dx,

(Term 2) △t
∣∣(∇ · u′n

j , un+1
j · (un+1

j − un
j )
)∣∣ ≤

≤ (1− α)‖un+1
j − un

j ‖2 +
△t2

4(1− α)

∫

Ω

|∇ · u′n
j |2|un+1

j |2dx.

Inserting these bounds and EEV2 into the energy estimate, nonlinear, long time
stability thus follows provided

∫

Ω

{(ν + 2µ2△t|u′n|2)|∇un+1
j |2

−△t(
1

α
|u′n

j |2|∇un+1
j |2 + 1

4(1− α)
|∇ · u′n

j |2|un+1
j |2)}dx ≥ 0.

This follows provided, for some θ, 0 ≤ θ ≤ 1,

∫

Ω

{[θν + 2△t(µ2 −
1

2α
)|u′n|2]|∇un+1

j |2(5.3)

+[(1− θ)ν|∇un+1
j |2 − 1

4(1− α)
△t|∇ · u′n

j |2|un+1
j |2]}dx ≥ 0.

(5.3) holds if

θν + 2△t(µ2 −
1

2α
)|u′n|2 ≥ 0, and

(1− θ)ν‖∇un+1
j ‖2 − 1

4(1− α)
△t‖∇ · u′n

j ‖2L4‖un+1
j ‖2L4 ≥ 0.

The Sobolev embedding theorem and the Poincaré inequality yield
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θν + 2△t(µ2 −
1

2α
)|u′n|2 ≥ 0, and

(1− θ)ν‖∇un+1
j ‖2 − C

4(1− α)
△t‖∇ · u′n

j ‖2L4‖∇un+1
j ‖2 ≥ 0,

which, completing the proof, are equivalent to (5.2).

Next EEV1 is considered.

Theorem 4. Consider (5.1) with EEV1 νT = µ1△x|u′|. A sufficient condition for
stability is that if for some θ, 0 ≤ θ ≤ 1, the two timestep conditions hold,

(5.4) (1− θ)ν − C

2
∆t‖∇ · u′n

j ‖2L4 ≥ 0,
△t|u′(x, tn)|

△x
≤ 1

2
µ1 +

1

2

√
µ2
1 +

θν△t

△x2
.

This is implied by the two special cases

(1− θ)ν − C

2
∆t‖∇ · u′n

j ‖2L4 ≥ 0 and
△t|u′(x, tn)|

△x
≤ 1

2
µ1,

or (1− θ)ν − C

2
∆t‖∇ · u′n

j ‖2L4 ≥ 0 and
△t|u′(x, tn)|2

θν
≤ 1

4
.

Proof. Following the proof of Theorem 3 with EEV1 gives the sufficient condition
∫

Ω

{[ν + 2µ1△x|u′n|]|∇un+1
j |2

−△t[2|u′n
j |2|∇un+1

j |2 + 1

2
|∇ · u′n

j |2|un+1
j |2]}dx ≥ 0.

This follows provided, for some θ, 0 ≤ θ ≤ 1,

∫

Ω

{[θν + 2µ1△x|u′n| − 2△t|u′n|2]|∇un+1
j |2(5.5)

+[(1− θ)ν|∇un+1
j |2 − 1

2
△t|∇ · u′n

j |2|un+1
j |2]}dx ≥ 0.

(5.5) holds if

θν + 2µ1△x|u′n| − 2△t|u′n|2 ≥ 0, and

(1− θ)ν‖∇un+1
j ‖2 − 1

2
△t‖∇ · u′n

j ‖2L4‖un+1
j ‖2L4 ≥ 0.

Since ‖u‖L4 ≤ C(Ω)‖∇u‖, the stability conditions become

θν + 2µ1△x|u′n| − 2△t|u′n|2 ≥ 0, and

(1− θ)ν − C

2
△t‖∇ · u′n

j ‖2L4 ≥ 0.

Rescale by s = △t|u′n|/△x ≥ 0:

θν + 2µ1
△x2

△t
s− 2

△x2

△t
s2 ≥ 0.

Solving the quadratic inequality, we obtain (5.4).



NUMERICAL ANALYSIS OF TWO ENSEMBLE EDDY VISCOSITY MODELS OF FLUID MOTION11

All the stability conditions can be applied locally when the △x in the model is
the local meshwidth he, e.g.,

△t|u′(x, tn)|
△x

≤ 1

2
µ1 replaced by

△tmaxx∈e |u′(x, tn)|
he

≤ 1

2
µ1 for all elements e.

Finally, note that both EEV terms are nonnegative. Thus, stability follows from
any of the conditions derived in [21] for the laminar case (where νT = 0). We
summarize these without proof.

Theorem 5 (Stability: laminar flow timestep conditions). Consider the method
(5.1) with either EEV1 or EEV2. Stability holds under any of the conditions below
(where C = C(Ω)) for the indicated cases:

C
∆t

ν△x
‖∇u′n

j ‖2 ≤ 1, in 2d and 3d,

C
|ln(h)|∆t

ν
‖∇u′n

j ‖2 ≤ 1, in 2d ,

C
∆t

ν△x2
(‖u′n

j ‖2 + ‖∇ · u′n
j ‖2) ≤ 1, in 2d ,

C
∆t

ν△x2
‖u′n

j ‖2L3 ≤ 1, in 3d ,

Cmax
e

∆t

νhe
‖∇u′n

j ‖2L2(e) ≤ 1, in 3d on locally refined meshes.

6. Numerical Tests

In tests in [21] with νT = 0 it was seen clearly that as the Reynolds number
increased, the timestep restriction imposed for stability, summarized in Theorem
5, forced the timestep to become exceedingly small. The main goal of these tests
(performed using FreeFEM++, [17]) is to check the theoretical predictions of The-
orems 1− 4 of the effect on stability of the added EEV terms. We thus begin with
tests from [21] at the Reynolds numbers at which the laminar criteria failed. While
these first tests are 2d, they reveal interesting differences among the methods.

Test 1 was for flow between offset cylinders driven by a rotating body force
(Re = 800). Space averaged statistics of interest to rotating flow were tracked in
time. The ensemble method plus EEV2 yielded reasonable statistics, see Figures
2, 3, 4, 19, 21. Stability for EEV2 was obtained for moderate timesteps while no
ensemble eddy viscosity (νT = 0) required time adaptivity and prohibitively small
timesteps, Figure 1 Left and Right. The noEV simulation also yielded nonsensical
solutions (Supplementary Material).

One anomaly observed was that the time average EEV2 kinetic energy was
somewhat greater than that of the noEV solutions. This was because the EEV2
solutions align more with the body force and thus there is more energy input
through body force-flow interactions (through 2△t(fn+1, un+1)) that with the no-
EV solutions, due to cancellation in the nonphysical, O(△x) eddies, expected in
under-resolved flows. Test 2 compared EEV1 and EEV2 for the same geometry
at Re = 800, 1200, 2400 and constant timestep △t = 0.025. noEV runs failed at
Re = 1200, 2400. EEV2, while more stable numerically, gave better solutions than



12 NAN JIANG AND WILLIAM LAYTON

EV2 NoEV

0 1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5
epsilon1= 0.001, epsilon2= −0.001, dt(0)=0.05, Re=800

time

t
i
m

e
 
s
t
e

p

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
epsilon1= 0.001, epsilon2= −0.001, dt(0)=0.05, Re=800

time

t
i
m

e
 
s
t
e

p

Figure 1. Timestep evolution, ν = 1/800,

EEV1. Indeed, EEV1 dramatically over-diffused the flow ; solutions very quickly
approach nonphysical Stokes-flow like velocities. To improve EEV1 two possibil-
ities are natural: a better choice of µ1 and reinitialization of perturbations (Test
3). In exhaustive tests (not reported herein), we found the EEV1 solutions to be
very sensitive to µ1 with a narrow range of µ1−values producing good results. This
observation opens interesting research questions as yet unresolved. Test 3 (results
given in the supplementary materials) repeated these two tests but reinitialized the
perturbations at t = 1, 2, 3, · · · . The conclusions regarding stability were not al-
tered by reinitialization. Test 4 was an accuracy test with a smooth, known exact
solution. In Test 4 both EEV1 and EEV2 produced 2 significant digits of accuracy
with △x = 0.1, an acceptable result. Test 5 is a flow in a channel with 2 outlets
and a constriction from [4, 18, 23]. Both EEV1 and EEV2 gave the correct general
outlines of the flow (compared to a fine mesh solution presented in the Supplement
and others published results) and differences in the smaller details of the flow.

Test 1: Stability of noEV vs. EEV2 for flow between offset circles.

Motivated by the classic problem of flow between rotating cylinders, the domain is
a disk with a smaller, off-center obstacle inside. Let r1 = 1, r2 = 0.1, c = (c1, c2) =
( 12 , 0). The domain and body force are given by

Ω = {(x, y) : x2 + y2 ≤ r21 and (x− c1)
2 + (y − c2)

2 ≥ r22},
f(x, y, t) = (−4y ∗ (1− x2 − y2), 4x ∗ (1− x2 − y2))T

with no-slip boundary conditions on both circles. The flow, driven by a counter-
clockwise force with f ≡ 0 at the outer circle at Re = 800, rotates about (0, 0) and
interacts with the immersed circle (x − c1)

2 + (y − c2)
2 ≤ r22. This induces a von

Kármán vortex street which re-interacts with the immersed circle creating more
complex structures. The mesh has n = 40 mesh points around the outer circle and
m = 10 mesh points around the immersed circle, and extended to Ω as a Delaunay



NUMERICAL ANALYSIS OF TWO ENSEMBLE EDDY VISCOSITY MODELS OF FLUID MOTION13

mesh. This flow will be under-resolved. Thus we test stability of flow statistics but
not flow details.

Adapting the timestep. For EEV2 and NoEV, we take the constant C =
1/1200. For EEV2, we take µ2 = 1 and adapt the timestep by halving and doubling
to enforce (5.2):

0.5 ∗ 2400

Re
≤ ∆t||∇ · (un

j,h− < uh >n)||2L4 ≤ 2400

Re
, subject to △t ≤ 0.05.

For NoEV, similarly halving and doubling enforces the 2d condition of [21]

0.5 ∗ 1200

Re
≤ |ln(h)|∆t||∇(un

j,h− < uh >n)||2 ≤ 1200

Re
, subject to △t ≤ 0.05.

The timestep evolution is in Figure 1. Without enforcing △t ≤ 0.05, EEV2 adap-
tivity increased △t to △t ≥ 12, suggesting that EEV2 also controls errors in ||∇·u||
and that the value µ2 = 1 could be further reduced significantly for this flow.

Generation of the initial conditions. Initial perturbations u0
j , j = 1, 2, and

u0
0 (with ǫ ≡ 0, ‘no perturbation’), are generated by solving the steady Stokes

problem with body forces perturbed by ±ǫ(sin(3πx)sin(3πy), cos(3πx)cos(3πy))T .
We choose ǫ = 10−3. These initial conditions give u1, u2, uave = (u1 + u2)/2 and
u0 (initial condition u0

0 -‘no perturbation’).
Quantities plotted. We plot over 0 ≤ t ≤ 10 angular momentum, enstrophy,

energy (integral invariants of the Euler equations of relevance to rotational flows)
and total dissipation rates for EEV2 and noEV:

|Angular Momentum| = |
∫
Ω
~x× ~u d~x|, Enstrophy = 1

2ν‖∇ × ~u‖2,
Energy = 1

2‖u‖2, Power Input =
(
fn+1
j , un+1

j

)
,

EEV2-Dissipation =
1

2△t
‖un+1

j − un
j ‖2 + b∗

(
u′n
j , un

j , u
n+1
j

)

+

∫

Ω

[ν + νT ( · )]|∇un+1
j |2dx,

NoEV-Dissipation =
1

2△t
‖un+1

j − un
j ‖2 + b∗

(
u′n
j , un

j , u
n+1
j

)

+ν‖∇un+1
j ‖2.

Next the Reynolds number was increased to Re = 1200 and 2400. At Re = 1200,
2400 the noEV runs failed while EEV2 remained stable with △t = 0.05.

Test 2: Stability of EEV1 vs. EEV2. Test 1 was repeated comparing
EEV1 and EEV2 for Re = 800 and constant timestep. We take ∆t = 0.025, Re =
800, µ2 = 1, µ1∆x = 0.2

The EEV1 simulation is clearly over-damped. The streamlines (Supplementary
Material) of the EEV1 simulation show that the velocity has converged to the
Stokes flow solution which is incorrect. Strong over-damping of EEV1 vs. EEV2
was a consistent result and was only corrected by a brute force search for an optimal
EEV1 parameter.

Test #3: Re-initialization: If every ensemble member has the same body
forces and slightly perturbed initial conditions, then over small time the fluctuations
remain small and over intermediate time they may give a reasonable estimate of
the kinetic energy in turbulent fluctuations. Over longer time, the trajectories
determined by these nearby initial conditions separate and (while constrained to
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Figure 2. Angular Momentum, ν = 1/800

the same ball in L∞ (0, T ;L2(Ω )) ∩ L2 (0, T ;H1(Ω )) k′ → O(1). Periodic re-
initialization of the ensembles may be necessary and may alter the conclusions
of the tests. To check this, we repeat Test 2 but reinitialize the perturbation at
t = 1, 2, 3, · · ·, restarting with the current average and the same perturbations
as at t = 0. We use ∆t = 0.025, Re = 800, µ2 = 1, µ1∆x = 0.2 , (△t small
enough for stability of EEV1 and EEV2). The results ( Supplementary Materials)
are consistent with Tests 1 and 2. The EEV1 results improved somewhat but still
EEV1 over-diffused while EEV2 did not.

Test #4: Accuracy. We check accuracy on a problem with known exact
solution from [15] which has spacial patterns of the Green-Taylor solution, [2], [14],
without time decay. Thus, for the true solution the nonlinearity is active for the
pressure but not the velocity. For the discrete solution the nonlinearity is active due

to discretization and model effects. Define ũ(x, y) = (− cosx sin y,+sinx cos y)
T
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Figure 3. Enstrophy, ν = 1/800

Error EV1 EV2

‖∇u1 −∇u1,h‖2,0 0.02016440759 0.0162905579

‖∇u2 −∇u2,h‖2,0 0.02012253135 0.0162294437

‖∇uexact −∇uave,h‖2,0 0.02014346778 0.01625999831

‖∇p1 −∇p1,h‖2,0 0.03308893594 0.02667901262

‖∇p2 −∇p2,h‖2,0 0.03258390956 0.02619554571

Table 1. Re=800, ∆t = 0.05, h = 0.1

and u(x, y, t) = g(t)ũ(x, y). Thus

u1 = −g(t) cosx sin y, u2 = +g(t) sinx cos y

p = −1

4
[cos(2x) + cos(2y)]g2(t), g(t) = sin(2t).

This is an exact solution with body force f(x, y, t) = ũ(x, y)[g′(t) + 2νg(t)]. We
compute the solution of EEV1 and EEV2 at T = 1 and compute errors.
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Figure 4. Energy, ν = 1/800
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Figure 5. EEV2 Angular Momentum, ν = 1/1200

We see acceptable accuracy (error ∼ 10−2) even on coarse meshes (△x = 0.1).
This is evidence that the nonlinearity introduced by EEV1&2 is small for smooth
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Figure 6. EEV2 Enstrophy, ν = 1/1200
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Figure 7. EEV2 Energy, ν = 1/1200
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Figure 8. EEV2 Angular Momentum, ν = 1/2400

functions and that the time and space discretization does not introduce significant
nonphysical nonlinear effects into the discrete velocity field.
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Figure 9. EEV2 Enstrophy, ν = 1/2400
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Figure 10. EEV2 Energy, ν = 1/2400

Error EV1 EV2

‖∇u1 −∇u1,h‖2,0 0.02071888682 0.04244542311

‖∇u2 −∇u2,h‖2,0 0.02067566768 0.04229541702

‖∇uexact −∇uave,h‖2,0 0.02069727546 0.04237040275

‖∇p1 −∇p1,h‖2,0 0.0330861719 0.0274518365

‖∇p2 −∇p2,h‖2,0 0.03257960354 0.02697616082

Table 2. Re=10,000, ∆t = 0.05, h = 0.1

Test 5: A flow from [18, 23, 4] with two outlets and a contraction.

The domain is depicted in Figure 15. It has inflow boundary on the LHS and
two outflow boundaries (top and RHS) where the do-nothing outflow boundary
condition is imposed. Since the boundary conditions do not satisfy u · n̂ = 0, the
convective form of the nonlinear term b(u, u, v) = (u · ∇u, v) was used. The body
force f(x, y, t) = 0 and the perturbed initial conditions are generated as in Test
1. The inflow profile is parabolic (4 ∗ y ∗ (1 − y), 0)T . We take Re = 1000 and a
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Figure 11. Angular Momentum, ν = 1/800

constant timestep △t = 0.01. The speed contours at time T = 4 for all methods are
plotted in Fig. 16. All methods were tested on a coarse mesh which provides 15, 133
total degrees of freedom (DOF). EEV1 and EEV2 stay stable and give solutions
matching the pattern shown in [4] and our finer mesh simulation (supplementary
materials). NoEV is unstable under the same condition. A comparison of Energy
for all three methods is given in Figure 17.

7. Conclusions and Open Questions

While the tests were preliminary, EEV2 outperformed EEV1 in every test. This
suggests further study of EEV2. However, it should not be concluded that EEV2
is better in general because the combination of numerical dissipation from the
backward Euler time discretization and EEV2 is the active model. This precise
combination fits perfectly the needs on controlling the growth due to the lagged
term. Changing the time discretization (to a superior high order time discretization)
may also change the optimal eddy viscosity parametrization. We also found that,
while grad-div stabilization does improve many under-resolved simulations, with
EEV2 it added little to solution quality. Further, the high sensitivity of the EEV1
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Figure 12. Energy, ν = 1/800

results to the parameter choice is only a disadvantage until a good strategy for
parameter selection is derived for EEV1, an open problem.

There are many questions open. First, block algorithms for the occurring linear
system will determine efficiency and need to be tested. When J is large, the number
of realizations per run vs. the number of runs is a compiler issue, needs to be
investigated and will vary. The question of how to design an effective, self-adaptive
reinitialization strategy is also an important open question. Analytic questions
abound concerning existence of solutions to the NSE+EEV2:

uj,t + uj · ∇uj − ν△uj +∇pj −∇ · (µτ |u′|2∇uj) = fj(x, t), in Ω,

where: u′
j := uj− < u > and ∇ · uj = 0, in Ω.

The closest analog is the (single realization) existence theory in [24] for a model
like EEV1. The EEV2 model does not give control over u but rather gives control
over

∫ T

0

∫

Ω

|uj −
1

J

J∑

j=1

uj |2|∇uj |2dx ≤ C(data, T ).
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Figure 13. Enstrophy, ν = 1/800
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Figure 14. Energy: EV1 Vs EV2, ∆t = 0.025, ν = 1/800

Thus, existence is not completely transparent and uniqueness is still a significant
challenge.
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Figure 15. mesh: 15,133 DOF
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Figure 16. Re = 1000, ∆t = 0.01, T = 4, µ1∆x = 0.002, µ2 = 1
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