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Abstract. This note proves that under the usual timestep condition 4t|Λ| < 1 , derived from
the scalar test problem y′ + ay + iλy = 0, all modes of the Crank-Nicolson Leap Frog (CNLF)
approximate solution to the system

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0

where A + AT > 0 and Λ is skew symmetric, are asymptotically stable. Thus, CNLF does indeed
control the unstable mode.
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1. Introduction. In this note we prove (asymptotic) stability of the so-called
unstable mode (or computational mode) of the Crank-Nicolson Leap-Frog, CNLF,
method for:

du

dt
+Au+ Λu = 0, for t > 0 and u(0) = u0 (1.1)

A : A+AT > 0 and Λ : skew symmetric.

Here u : [0,∞) → Rd and the square, non-commutative, real matrices A,Λ have
compatible dimensions. Under these conditions, the solution to (1.1) satisfies u(t)→ 0
as t→∞ so any growth in the approximate solution is a numerics induced instability.
With superscript denoting the time step number, CNLF, the Implicit-Explicit (IMEX)
combination of Crank-Nicolson and Leap Frog, is given by: given u0, u1, for n ≥ 2

un+1 − un−1

24t
+A

un+1 + un−1

2
+ Λun = 0. (CNLF)

Root condition analysis for the scalar test problem y′ + ay + iλy = 0 leads to the
timestep condition, necessary for stability, [JK63], and recently proven sufficient in
[LT12],

4t|Λ| < 1, | · | = euclidean norm. (1.2)

However, in practical simulations, difficulties with CNLF’s unstable mode occur. It
is often reported that as n→∞

Stable Mode: |un+1 + un−1| → 0,

Unstable Mode: |un+1 − un−1| → ∞. (1.3)
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CNLF is used for many geophysical flow simulations from which experience with and
fixes for the unstable mode are correspondingly large, e.g., [D10], [K03], [K12], [TL05],
[A72], [R69], [W11], [JW11]. One mystery is that since CNLF is stable under (1.2), no
growth is possible in theory and yet time filters to deal with (1.3) are nearly universal
in practice, [JW11]. It is an open question to determine if this could be due to a gap
for IMEX methods (e.g., [ARW95], [CM10], [FHV96], [HV03], [V80], [V09]) between
necessary conditions from root condition analysis and sufficient ones for systems, to
accumulation in the unstable mode of roundoff errors, to imperfect imposition of the
timestep condition, to nonlinearities or other unknown causes. We prove that under
(1.2) the CNLF unstable mode is (asymptotically) stable. This result, consistent with
numerical tests in Section 3, supports the scenario that growth in the unstable mode
is due to imperfect imposition of and thus slight violation of (1.2).

Theorem 1.1. Suppose the timestep condition (1.2) holds. Then, all modes of
CNLF are asymptotically stable:

un → 0 as n→∞ and thus both

un+1 + un−1 → 0 and un+1 − un−1 → 0.

2. Proof of asymptotic stability of the unstable mode. Denote the usual
euclidean inner product and norm by 〈w, v〉 := wT v , |v|2 := 〈v, v〉 and the A−norm
(well defined since A+AT > 0) by

|u|2A := uTAu.

Step 1: Energy Stability. In step 1 we follow [LT12]. Take the inner product
of CNLF with un+1 + un−1, add and subtract |un|2 and multiply through by 24t.
This yields [

|un+1|2 + |un|2
]
−
[
|un|2 + |un−1|2

]
+4t|un+1 + un−1|2A + 24t〈Λun, un+1 + un−1〉 = 0. (2.1)

Next, using skew symmetry rearrange

24t〈Λun, un+1 + un−1〉 = 24t〈Λun, un+1〉 − 24t
〈
Λun−1, un

〉
.

Define the first energy (which is positive if 4t|Λ| < 1, [LT12])

En+1/2 := |un+1|2 + |un|2 + 24t〈Λun, un+1〉.

Collecting terms we obtain

En+1/2 − En+1/2 +4t|un+1 + un−1|2A = 0. (2.2)

This implies that the stable mode un+1 + un−1 → 0 as n→∞. Indeed, summing for
n = 1, · · ·, N and then letting N →∞ , we see that∑∞

n=1
|un+1 + un−1|2A <∞

and thus the nth term |un+1 + un−1|2A → 0.
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Step 2: A second estimate. Take the inner product of CNLF with un+1−un−1
and multiply through by 24tδ where δ > 0 will be determined later. This gives

4tδ
〈
A(un+1 + un−1), un+1 − un−1

〉
+δ|un+1 − un−1|2 + 2δ4t〈Λun, un+1 − un−1〉 = 0. (2.3)

Split the operator A into two parts, A := As +Ass where As is symmetric and Ass is
skew-symmetric. The first term of (2.3) becomes〈

A(un+1 + un−1), un+1 − un−1
〉

=
〈
As(u

n+1 + un−1), un+1 − un−1
〉

+
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

=
〈
Asu

n+1, un+1
〉
−
〈
Asu

n−1, un−1
〉

+
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

= |un+1|2A − |un−1|2A +
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

since the A−norm holds the property |v|2A = 〈Asv, v〉. Use the above equality for the
first term in (2.3) and add and subtract 4tδ|un|2A to gain[

δ4t|un+1|2A + δ4t|un|2A
]
−
[
δ4t|un|2A + δ4t|un−1|2A

]
+δ4t

〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

+δ|un+1 − un−1|2 + 2δ4t〈Λun, un+1 − un−1〉 = 0. (2.4)

Define the second energy

En+1/2 := En+1/2 + δ4t|un+1|2A + δ4t|un|2A.

The key step is adding (2.2) and (2.4) which gives

En+1/2 − En−1/2 +4t|un+1 + un−1|2A + δ|un+1 − un−1|2

+δ4t
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

+ 2δ4t〈Λun, un+1 − un−1〉 = 0.

Summing this from n = 1 to N gives

EN+1/2 +

N∑
n=1

[
4t|un+1 + un−1|2A + δ|un+1 − un−1|2

]
+Q1 +Q2 = E1/2, (2.5)

Q1 :=

N∑
n=1

δ4t
〈
Ass(u

n+1 + un−1), un+1 − un−1
〉
,

Q2 :=

N∑
n=1

2δ4t〈Λun, un+1 − un−1〉.

Step 3: Bounding |Q1| & |Q2| . For Q1 note that〈
Ass(u

n+1 + un−1), un+1 − un−1
〉

≤ |Ass||un+1 + un−1||un+1 − un−1|

≤ 1

2ε
|Ass||un+1 + un−1|2 +

ε

2
|Ass||un+1 − un−1|2

where ε > 0. Hence

|Q1| ≤
N∑

n=1

δ4t
2ε
|Ass||un+1 + un−1|2 +

N∑
n=1

δ4tε
2
|Ass||un+1 − un−1|2
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For Q2 note that

〈Λun, un+1 − un−1〉

=
1

2
〈Λ(un − un−2), un+1 − un−1〉+

1

2
〈Λ(un + un−2), un+1 − un−1〉

≤ 1

2
|Λ||un − un−2||un+1 − un−1|+ 1

2
|Λ||un + un−2||un+1 − un−1|

≤ 1

2
|Λ|
(

1

2
|un − un−2|2 +

1

2
|un+1 − un−1|2

)
+

+
1

2
|Λ|
(

1

2ε
|un + un−2|2 +

ε

2
|un+1 − un−1|2

)
.

Then

2δ∆t

N∑
n=1

1

2
|Λ|
(

1

2
|un − un−2|2 +

1

2
|un+1 − un−1|2

)
=
δ

2
∆t|Λ||uN+1 − uN−1|2+

+δ∆t|Λ|
(
|uN − uN−2|2 + · · ·+ |u3 − u1|2

)
+
δ

2
∆t|Λ||u2 − u0|2

≤ δ∆t|Λ|
N∑

n=1

|un+1 − un−1|2, (2.6)

and

2δ∆t

N∑
n=1

1

2
|Λ|
(

1

2ε
|un + un−2|2 +

ε

2
|un+1 − un−1|2

)

=
δ∆t|Λ|

2ε

N−1∑
n=1

|un+1 + un−1|2 +
εδ∆t|Λ|

2

N∑
n=1

|un+1 − un−1|2

≤δ∆t|Λ|
2ε

N∑
n=1

|un+1 + un−1|2 +
εδ∆t|Λ|

2

N∑
n=1

|un+1 − un−1|2. (2.7)

Thus, |Q2| is now bounded by combining (2.6) and (2.7) as follows

|Q2| ≤ δ∆t|Λ|(1 +
ε

2
)

N∑
n=1

|un+1 − un−1|2 +
δ∆t|Λ|

2ε

N∑
n=1

|un+1 + un−1|2.

Hence

|Q1|+ |Q2| ≤ δ∆t
(
|Λ|(1 +

ε

2
) +

ε

2
|Ass|

) N∑
n=1

|un+1 − un−1|2

+
δ∆t

2ε

(
|Λ|+ |Ass|

) N∑
n=1

|un+1 + un−1|2.

Step 4: Using the Q1 & Q2 estimates in the energy inequality. Inserting
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this estimate for Q1 and Q2 into the energy inequality and collecting terms gives

EN+1/2 + δ
(

1− (1 +
ε

2
)∆t|Λ| − ε

2
4t|Ass|

) N∑
n=1

|un+1 − un−1|2

+∆t

N∑
n=1

(
|un+1 + un−1|2A −

δ

2ε

(
|Λ|+ |Ass|

)
|un+1 + un−1|2

)
≤ C(u0, u1). (2.8)

Step 5: Estimating the unstable mode. Since the RHS, C(u0, u1), is inde-
pendent of N , we can let N →∞ and conclude that

δ
(

1− (1 +
ε

2
)∆t|Λ| − ε

2
4t|Ass|

) ∞∑
n=1

|un+1 − un−1|2+

+∆t

∞∑
n=1

(
|un+1 + un−1|2A −

δ

2ε
(|Λ|+ |Ass|)|un+1 + un−1|2

)
<∞.

From this we shall deduce that
∑∞

n=1 |un+1−un−1|2 <∞ and thus |un+1−un−1|2 → 0
as n →∞. To make this step, two conditions are required: the second sum must be
non-negative and the coefficient of the first sum positive. That coefficient is positive
if

ε < 2
1−4t|Λ|

4t|Λ|+4t|Ass|

Since ε > 0 is arbitrary, this condition can be satisfied if the stability condition
∆t|Λ| < 1 holds. For the second sum to be non-negative, it suffices that

|un+1 + un−1|2A −
δ (|Λ|+ |Ass|)

2ε
|un+1 + un−1|2 ≥ 0.

This can be attained by picking δ = ελmin(As)/ (|Λ|+ |Ass|), where λmin(As) denotes
the minimum eigenvalue of As. With this condition on4t and choice of δ, we conclude
that the sum below converges

∞∑
n=1

|un+1 − un−1|2 ≤ C <∞. (2.9)

Thus the nth term |un+1 − un−1|2 → 0 and |un+1 + un−1|2A → 0 from Step 1. Hence,
un → 0 and all modes, including the unstable mode, are controlled.

3. Numerical Exploration of the Unstable Mode. There are (at least)
three natural conjectures about the growth of the unstable mode1. The first is that
practical simulations often occur with many accompanying perturbations. Thus the
matrix Λ will only be skew symmetric to O(ε), where ε is the magnitude of the errors in
numerical integration, computer arithmetic, function evaluation, previous calculations
and so on used to generate Λ and form the product Λu. These perturb the eigenvalues
of Λ to be outside the stability interval of leap-frog, {z : Re(z) = 0,−1 < Im(z) < +1}.
CN contributes damping of the stable mode sufficient to control its growth, leaving the

1These scenarios owe much to many lively discussions with Catalin Trenchea, for which we are
appreciative.
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unstable mode’s growth to accumulate. The second is that practical simulations often
occur for implicitly defined operators Λ. The singular values of Λ are not available
and guesses of |Λ| based on physical reasoning or preliminary calculations are used
instead. As a result, the timestep condition 4t|Λ| < 1 may be slightly violated. This
results in an instability that begins small, is damped in the stable mode by CN and
accumulates in the unstable mode. The third is that the unstable mode occurs only
in cases not covered by the theorem such as with A = A(u). Practical simulations
often occur with Λ a linear operator (as covered) but A = A(u) a nonlinear operator
with 〈A(u), u〉 ≥ 0 for which step 2 in the proof fails.

We give three tests to check these scenarios.
Test 1:A has large skew symmetric part. Let

A =

[
104 103

−103 10−4

]
which has symmetric part As = diag{104, 10−4} and skew symmetric part Ass =
antidiag{−103, 103} and consider the 2× 2 system

du

dt
+ (104u+ 103v)− v = 0,

dv

dt
+ (10−4v − 103u) + u = 0.

The matrix Λ is

Λ =

[
0 −1

+1 0

]
.

We apply CNLF over a long time interval:

un+1 − un−1

24t
+ 104

un+1 + un−1

2
+ 103

vn+1 + vn−1

2
− vn = 0,

vn+1 − vn−1

24t
+ 10−4

vn+1 + vn−1

2
− 103

un+1 + un−1

2
+ un = 0,

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ| = 1 so the
time step condition is 4t < 1. We test:

• For 4t = 1.01(> 1) CNLF is unstable. Figure 3.1 verifies that the instability
occurs in only the unstable mode (a scenario suggested by root condition
analysis [D10]).

• For 4t = 0.99 < 1, CNLF is energy stable. All modes are observed to be
stable in figure 3.4 over a very long time interval.

Test 2: Small perturbations of Λ. Let A = diag{104, 10−4} and consider the
2× 2 system

du

dt
+ 104u+ ε1u− v = 0,

dv

dt
+ 10−4v + ε2v + u = 0.

The matrix Λ is thus

Λε1,ε2 =

[
ε1 −1
+1 ε2

]
in which skew symmetry is broken by the small, random coefficients ε1 and ε2. We
apply CNLF over a long time interval:

un+1 − un−1

24t
+ 104

un+1 + un−1

2
+ ε1u

n − vn = 0,

vn+1 − vn−1

24t
+ 10−4

vn+1 + vn−1

2
+ ε2v

n + un = 0,
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Fig. 3.1. For 4t = 1.01 the unstable mode grows and the stable mode decays

Fig. 3.2. For 4t = .99 the both unstable and stable modes decay

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ0,0| = 1 so the
time step condition is 4t < 1. We test:

• For 4t = 1.01(> 1) and ε1 = ε2 = 0 CNLF is unstable. Figure 3.3 verifies
that the instability once again occurs in only the unstable mode.

• For 4t = 0.99 < 1, CNLF is energy stable if ε1 = ε2 = 0; we pick ε1 = ε2 =
10−4 and check for growth in the unstable mode in figure 3.4. All modes are
observed to be stable over a very long time interval.
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Fig. 3.3. For 4t = 1.01 the unstable mode grows and the stable mode decays

Fig. 3.4. For 4t = .99 the both unstable and stable modes decay

Test 3: Nonlinear version of Test 2. Consider the 2× 2 nonlinear system

du

dt
+ a1(u) + ε1u− v = 0,

dv

dt
+ a2(v)10−4v + ε2v + u = 0,

where a1(u) = 104|u|u, and a2(v) = 10−4|v|v.

The matrix Λ is thus

Λε1,ε2 =

[
ε1 −1
+1 ε2

]
in which skew symmetry is broken by the small coefficients ε1 and ε2. We apply
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Fig. 3.5. For 4t = 1.01 the unstable mode grows and the stable mode decays

CNLF over a long time interval:

un+1 − un−1

24t
+ a1

(
un+1 + un−1

2

)
+ ε1u

n − vn = 0,

vn+1 − vn−1

24t
+ a2

(
vn+1 + vn−1

2

)
+ ε2v

n + un = 0,

with starting conditions u0 = v0 = u1 = +1, v1 = −1. We calculate |Λ0,0| = 1 so the
two time step condition is 4t < 1. We observe that:

• For 4t = 1.01(> 1) and ε1 = ε2 = 0 CNLF is unstable; The instability again
occurs in only the unstable mode, figure 3.5.

• For 4t = 0.99 < 1, CNLF is energy stable (as Step 1 of the proof extends to
this nonlinear case) if ε = 0. Pick ε1 = ε2 = 10−4 in this test and find all
modes go to zero (figure 3.6); there is no growth in the unstable mode.
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