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Abstract

We propose and analyze a linear stabilization of the Crank-Nicolson Leap-Frog
(CNLF) method that removes all timestep / CFL conditions for stability and
controls the unstable mode. It also increases the SPD part of the linear system
to be solved at each time step. We give a proof of unconditional stability of
the method as well as a proof of unconditional, asymptotic stability of both
the stable and unstable modes. We illustrate two applications of the method:
uncoupling groundwater - surface water flows and Stokes flow plus a Coriolis
term.

1. Introduction

The implicit explicit (IMEX) combination of Crank-Nicolson and Leap Frog
(CNLF) is widely used in atmosphere, ocean and climate codes, e.g., [1], [2], [3],
[4] and has recently been used for uncoupling groundwater-surfacewater flows,
[5]. Although first analyzed in 1963 [6], stability of (CNLF) for systems was
only recently proven [7], along with asymptotic stability analysis of the unstable
(un+1 − un−1) mode in [8]. (CNLF) has two limitations. First, the unstable
mode (for which un+1 + un−1 ≡ 0) of LF is not damped by CN unless the
CFL condition ∆t|Wave Speed| < 1 is met. Thus, modular time filters, like
the Roberts-Asselin-Williams (RAW) filter [1], [2], [4], have been developed.
Second, the CFL restriction, ∆t|Wave Speed| < 1, even including time filters
like RAW, can be too restrictive.
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This report presents a new stabilization of (CNLF) addressing both issues.
(CNLFstab) is unconditionally (no CFL condition) stable (Theorem 1) and all
modes, including the unstable mode, are unconditionally asymptotically stable
(Theorem 2). We give the method (CNLFstab) below and prove uncondi-
tional stability and control of both the stable and unstable modes in Section 2.
Then we test its effects for two important examples: uncoupling evolutionary
groundwater - surface water flows, and Stokes flow + strong rotation in Section
3.

Consider an evolution equation written as

du

dt
+Au+ Λu = 0. (1)

We assume that X ↪→ L ↪→ X ′ are Hilbert spaces. Let < ·, · >, || · || denote the
inner product and norm on L. Suppose the linear operators A,Λ:

A : X → X ′ satisfies 〈A(u), u〉 ≥ 0 for all u ∈ X, (Positivity)

Λ : L→ L is a bounded, skew symmetric operator, (SkewSymmetry)

where the X,X ′ duality pairing is an extension of the L inner product. These
two assumptions ensure that

||u(t)||2 ≤ ||u0||2, ||u(t)||2 = ||u0||2 if Au ≡ 0 and

‖u(t)‖ → 0 as t→∞ if A is SPD.

These are the basic stability properties that must be preserved under discretiza-
tion.

The stabilized (CNLF) method we consider is then, given u0, u1 ∈ X find
un ∈ X for n ≥ 2 satisfying

un+1 − un−1

2∆t
+ ∆tΛ∗Λ

(
un+1−un−1

)
+A

(
un+1 + un−1

2

)
+ Λun = 0.

(CNLFstab)
The stabilization occurs in the term (in bold) ∆tΛ∗Λ

(
un+1 − un−1

)
. This term

is linear and SPD in the unknown un+1; it has no undetermined tuning parame-
ters; the extra consistency error it contributes is formally ∆t2Λ∗Λ (ut) = O(∆t2)
which is the same order as (CNLF). (CNLFstab), like (CNLF), is a 3 level
method and approximations of appropriate accuracy are needed at the first two
time steps, e.g. [9]. The stabilization we study herein is a complementary tool
similar in spirit to work in [10], [11], [12], [13]. For a general theory of IMEX
methods see [9], [14], [15], [16], [17], [18]. Both the algorithm and the stability
result in (Theorem 1) extend easily to the case with nonzero right hand side
f(t). An extension of Theorems 1 and 2 is given in Remark 1 following Theorem
2 for when f(t)→ f∞ as t→∞.
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1.1. The usual (CNLF) method

The usual (CNLF) method is

un+1 − un−1

2∆t
+A

(
un+1 + un−1

2

)
+ Λun = 0. (CNLF)

Let ||Λ|| = sup06=v∈L ||Λv||/||v|| < ∞ denote the operator norm of Λ. Stability
analysis in [7] shows (CNLF) is energy stable under the timestep restriction

∆t||Λ|| < 1 (CFL)

long expected, e.g., [6], from root condition analysis. In the common case when
Λ is a discretization of a wave propagation problem (CFL) reduces to a CFL
type condition like ∆t|Wave Speed| < 1.

Energy stability of (CNLF) under (CFL) is not completely descriptive of
computational practice with (CNLF) however. It has long been noted that
(CNLF) is marginally stable (described in [19] as ”slightly unstable”). When
the linear term includes some sort of viscous mechanism

〈Au, u〉 ≥ α||u||2 for some α > 0 and all u ∈ X,

then ||u(t)|| → 0 as t → ∞. In this common case, (CNLF) damps the energy
in the mode un+1 + un−1 and growth in the unstable mode is often reported.
When (CFL) holds, it was shown in [8] that (CNLF) does, in fact, control both
the stable and unstable modes. Alternately, if (CFL) is even slightly violated,
instability is exhibited in the (undamped) unstable mode, un+1 − un−1. This
drawback has led to various fixes such as the RAW or Roberts-Asselin-Williams
time filter, see [3], [20], [4]. The stabilization herein is not modular (unlike time
filters) but it does remove all CFL timestep conditions (also unlike time filters)
and thus provides a tool with complementary strengths and weaknesses to time
filters.

2. Stability without the CFL condition

We prove unconditional stability of (CNLFstab). The proof shows that the
coefficient of the stabilization term (here taken to be 1) may be reduced retaining
unconditional stability. It also shows that if Au ≡ 0, then the following quantity
is exactly conserved:

1

2
[||un+1||2 + ||un||2 + 2∆t2

(
||Λun+1||2 + ||Λun||2

)
] + ∆t

〈
Λun, un+1

〉
.

Theorem 1. Consider (1.1) under (Positivity) and (SkewSymmetry). The
method (CNLFstab) is unconditionally stable (with no timestep restriction):
for every N ≥ 1

1
2 ||u

N+1||2 + ||uN ||2 + 2∆t2||ΛuN+1||2

≤ ‖u1‖2 + ‖u0‖2 + 2∆t
〈
Λu0, u1

〉
.

(2)
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Proof. We take the duality pairing of (CNLFstab) with its stable mode,
un+1 + un−1 and follow the steps in [7] but with modified treatment of the
critical term

〈
Λun, un+1 + un−1

〉
. Take the inner product of (CNLFstab) with

the stable mode (un+1 +un−1) and multiply through by 2∆t. Add and subtract
||un||2; this gives

(||un+1||2 + ||un||2)− (||un||2 + ||un−1||2)+

+2∆t2
〈
Λ∗Λ

(
un+1 − un−1

)
, un+1 + un−1

〉
+

+∆t
〈
A(un+1 + un−1), un+1 + un−1

〉
+ 2∆t

〈
Λun, un+1 + un−1

〉
= 0.

The added stability term can be written as

2∆t2
〈
Λ∗Λ

(
un+1 − un−1

)
, un+1 + un−1

〉
= 2∆t2〈Λ

(
un+1 − un−1

)
,Λ(un+1 + un−1)〉

= 2∆t2
(
||Λun+1||2 − ||Λun−1||2

)
= 2∆t2

[(
||Λun+1||2 + ||Λun||2

)
−
(
||Λun||2 + ||Λun−1||2

)]
.

Now, define the stabilized system energy

En+1/2 := ||un+1||2 + ||un||2 + 2∆t2
(
||Λun+1||2 + ||Λun||2

)
.

We thus have

En+1/2 − En−1/2 + ∆t
〈
A(un+1 + un−1), un+1 + un−1

〉
+ 2∆t

〈
Λun, un+1 + un−1

〉
= 0.

Let Cn+1/2 :=
〈
Λun, un+1

〉
; using skew symmetry of Λ we have〈

Λun, un+1 + un−1
〉

= Cn+1/2 − Cn−1/2.

Thus, the stability equation becomes

En+1/2 − En−1/2 + ∆t
〈
A(un+1 + un−1), un+1 + un−1

〉
+ 2∆t

(
Cn+1/2 − Cn−1/2

)
= 0.

Sum the above from n = 1, . . . , N to obtain

EN+1/2+2∆tCN+1/2+∆t

N∑
n=1

〈
A(un+1 + un−1), un+1 + un−1

〉
= E1/2+2∆tC1/2.

We show that EN+1/2+2∆tCN+1/2 ≥ 0. By repeated application of the Cauchy-
Schwarz and Young inequality we have

2∆tCN+1/2 ≤ 2∆t2||ΛuN ||2 +
1

2
||uN+1||2.
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This implies

EN+1/2 + 2∆tCN+1/2 ≥ 1
2 ||u

N+1||2 + ||uN ||2 + 2∆t2||ΛuN+1||2 ≥ 0.

Therefore, we have

0 ≤ 1
2 ||u

N+1||2 + ||uN ||2 + 2∆t2||ΛuN+1||2

+ ∆t

N∑
n=1

〈
A(un+1 + un−1), un+1 + un−1

〉
≤ E1/2 + 2∆tC1/2,

(3)

which implies (2), by the (Positivity) of the operator A.
Next we prove unconditional asymptotic stability.

Theorem 2. Consider (CNLFstab). If the operator A(·) is a symmetric pos-
itive definite (SPD) linear operator, then both the stable mode and the unstable
mode are unconditionally, asymptotically stable:

un+1 + un−1 −→ 0 and un+1 − un−1 −→ 0 as n −→∞, (4)

and thus un → 0 as n→∞.

Proof. Take the inner product of (CNLFstab) with the unstable mode
(un+1 − un−1) and multiply through by 2δ∆t with δ > 0:

δ‖un+1 − un−1‖2 + 2δ∆t2
〈
Λ∗Λ(un+1 − un−1), un+1 − un−1

〉
(5)

+δ∆t
〈
A(un+1 + un−1), un+1 − un−1

〉
+ 2δ∆t

〈
Λun, un+1 − un−1

〉
= 0.

Because A is SPD, ‖u‖A := 〈Au, u〉 is well defined. After adding and subtract-
ing 2δ∆t‖un‖2A ≥ 0,

δ∆t
〈
A(un+1 + un−1, un+1 − un−1)

〉
= δ∆t

[
(‖un+1‖2A + ‖un‖2A)− (‖un‖2A + ‖un−1‖2A)

]
.

Define An+1/2 := ‖un+1‖2A + ‖un‖2A ≥ 0. Sum (5) from n = 1, . . . , N to obtain

δ

N∑
n=1

[
‖un+1 − un−1‖2 + 2∆t2‖Λ(un+1 − un−1)‖2

]
+ 2δ∆t

N∑
n=1

〈
Λun, un+1 − un−1

〉
+ δ∆tAN+1/2 = δ∆tA1/2.

(6)

Adding (3) to (6) yields
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0 < 1
2 ||u

N+1||2 + ||uN ||2 + 2∆t2||ΛuN+1||2 + δ∆tAN+1/2 + FN

+

N∑
n=1

[
∆t‖un+1 + un−1‖2A + δ‖un+1 + un−1‖2 + 2δ∆t2‖Λ(un+1 + un−1)‖2

]
≤ E1/2 + 2∆tC1/2 + δ∆tA1/2,

(7)

where

FN =

N∑
n=1

2δ∆t
〈
Λun, un+1 − un−1

〉
.

For FN , applying Young’s inequality gives, for any ε, 0 < ε < 1

|FN | ≤ δε
N∑
n=1

‖un+1 − un−1‖2 +
δ

ε

N∑
n=1

∆t2‖Λun‖2. (8)

The second term on the RHS can be rewritten as

‖Λun‖2 = ‖Λ(
un + un−2

2
) + Λ(

un − un−2

2
)‖2

= 2‖Λ(
un + un−2

2
)‖2 + 2‖Λ(

un − un−2

2
)‖2 − ‖Λ(un−2)‖2.

Then the bound on FN becomes

|FN | ≤ δε
N∑
n=1

‖un+1 − un−1‖2 +
δ

ε
∆t2‖Λu1‖2 − δ

ε

N∑
n=2

∆t2‖Λ(un−2)‖2

+
δ

2ε

N∑
n=2

∆t2
(
‖Λ(un + un−2)‖2 + ‖Λ(un − un−2)‖2

)
.

After shifting the index of the second sum, we obtain

‖FN‖ ≤ δε
N∑
n=1

‖un+1 − un−1‖2 +
δ

ε
∆t2‖Λu1‖2 − δ

ε

N∑
n=2

∆t2‖Λ(un−2)‖2

+
δ

2ε

N−1∑
n=1

∆t2
(
‖Λ(un+1 + un−1)‖2 + ‖Λ(un+1 − un−1)‖2

)
.

(9)
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Applying (9) to (7) gives

0 < 1
2‖u

N+1‖2 + ‖uN‖2 + 2∆t2‖ΛuN+1‖2 + δ∆tAN+1/2

+

N∑
n=1

[
∆t‖un+1 + un−1‖2A − δ∆t2

2ε ‖Λ(un+1 + un−1)‖2
]

N∑
n=1

δ
[
(1− ε)‖un+1 − un−1‖2 + ∆t2

(
2− 1

2ε

)
‖Λ(un+1 − un−1)‖2

]
+ δ∆t2

2ε ‖Λ(uN+1 + uN−1)‖2 + δ∆t2

2ε ‖Λ(uN+1 − uN−1)‖2

≤ E1/2 + 2∆tC1/2 + δ∆tA1/2 + δ∆t2

ε ‖Λu
1‖2.

(10)

Let λmin(A) represent the smallest eigenvalue ofA. BecauseA is SPD, λmin(A) >
0 and so ‖un+1 + un−1‖2A ≥ λmin(A)‖un+1 + un−1‖2.

Choose ε = 1
4 and δ = λmin(A)

4∆t‖Λ‖2 . By Theorem 1, 1
2‖u

N+1‖2+‖uN‖2+2∆t2‖ΛuN+1‖2 >
0 and can thus be dropped on the LHS. Then (10) becomes

0 <

N∑
n=1

[
∆tλmin(A)

2 ‖un+1 + un−1‖2 + 3λmin(A)
16∆t‖Λ‖2 ‖u

n+1 − un−1‖2
]

≤ E1/2 + 2∆tC1/2 + λmin(A)
4‖Λ‖2

(
A1/2 + 4∆t‖Λu1‖2

)
.

(11)

The above reduces to

N∑
n=1

[
‖un+1 + un−1‖2 + ‖un+1 − un−1‖2

]
≤ C(u1, u0), (12)

where C(u1, u0) is a constant depending on u1 and u0 but independent of N .
LettingN →∞, we conclude both ‖un+1+un−1‖2 → 0 and ‖un+1−un−1‖2 → 0.

Remark 1. The previous conclusions imply asymptotic stability about zero. By
linearity, these results extend to nonzero forcing terms on the right hand side,

fn = f(tn), provided
∞∑
n=1
‖fn−f∞‖2∗ ≤ C. If this holds, then following the steps

of Theorems 1 and 2, we conclude that, un+1 +un−1 → 2u∞, un−1−un+1 → 0,
and un → u∞, where u∞ solves the equilibrium problem, Au∞ + Λu∞ = f∞.

3. Two Applications

We consider the application of the (CNLFstab) to uncoupling of groundwater-
surfacewater flows and to Stokes flow plus a Coriolis force term, an over simplifi-
cation of the equations of geophysical flow, [21]. The application to Stokes flow
+ Coriolis force is direct, whereas the Stokes-Darcy application is more technical
and the correct extension of the (CNLFstab) method is not obvious. We give
a stability analysis of an interpretation of (CNLFstab) for both, incorporating
the time and space discretizations.
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3.1. The evolutionary Stokes-Darcy problem

See [22], [23], [24], [25], [26], [27], [28] for a careful presentation of the Strokes-
Darcy model, the derivation of its variational formulation (which involves a
number of technical steps) and its associated numerical analysis. Let Ωf ,Ωp lie
across an interface I from each other. For specificity, we take Ωf = (0, 1)×(0, 1),
Ωp = (0, 1) × (−1, 0) and I = {(x, 0), 0 < x < 1}. The fluid velocity u, fluid
pressure, p, and porous media’s piezometric head φ satisfy

ut − ν∆u+∇p = ff (x, t),∇ · u = 0, in Ωf , (13)

S0φt −∇ · (K∇φ) = fp(x, t), in Ωp,

φ(x, 0) = φ0(x), in Ωp and u(x, 0) = u0(x), in Ωf ,

φ(x, t) = 0, in ∂Ωp\I and u(x, t) = 0, in ∂Ωf\I.

Let n̂f/p denote the outward unit normal vector on I with respect to each sub-
domain. The coupling conditions across I are conservation of mass, balance of
forces on I and the Beavers-Joseph-Saffman condition on the tangential velocity:

u · n̂f −K∇φ · n̂p = 0 and p− ν n̂f · ∇u · n̂f = gφ on I,

−ν ∇u · n̂f =
α√

τ̂ i · K · τ̂ i
u · τ̂ i, on I for any τ̂ i tangent vector on I.

see [29], [30], [31]. Here g, K, ν and S0 are the gravitational acceleration con-
stant, hydraulic conductivity tensor, kinematic viscosity and specific mass stora-
tivity coefficient, all positive. Often λmin(K) and S0 are small, [32].

We denote the L2(I) norm by || · ||I and the L2(Ωf/p) norms by || · ||f/p,
respectively; the corresponding inner products are denoted by (·, ·)f/p. To dis-
cretize the Stokes-Darcy problem in space by the finite element method we
choose conforming velocity, pressure, and Darcy pressure finite element spaces

Velocity : Xh
f ⊂ Xf := {v ∈

(
H1(Ωf )

)d
: v = 0 on ∂Ωf\I},

Darcy pressure : Xh
p ⊂ Xp := {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp\I},

Stokes pressure : Qhf ⊂ Qf := L2(Ωf ).

Xh
p , X

h
f are separate FEM spaces; continuity across the interface I is not as-

sumed. The Stokes velocity-pressure finite element spaces (Xh
f , Q

h
f ) are assumed

to satisfy the usual discrete inf-sup condition for stability of the discrete pres-
sure, e.g., [33], [34], [35]. Define

af (u, v) = (ν∇u,∇v)f +
∑
i

∫
I

α√
τ̂ i · K · τ̂ i

(u · τ̂ i)(v · τ̂ i)ds,

ap(φ, ψ) = g(K∇φ,∇ψ)p, and

cI(u, φ) = g

∫
I

φu · n̂fds.
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Adaptation to Stokes-Darcy problem: Find (un+1
h , pn+1

h , φn+1
h ) ∈ Xh

f ×
Qhf ×Xh

p satisfying, for all vh ∈ Xh
f , qh ∈ Qhf , ψh ∈ Xh

p

gS0

(
φn+1
h − φn−1

h

2∆t
, ψh

)
p

+ +∆tg2(∇(φn+1
h − φn−1

h ),∇ψh)p

+∆tg2(φn+1
h − φn−1

h , ψh)p

+ap

(
φn+1
h + φn−1

h

2
, ψh

)
− cI(unh, ψh) = g(fnp , ψh)p (SDstab)(

un+1
h − un−1

h

2∆t
, vh

)
f

+

(
∇ ·

un+1
h − un−1

h

2∆t
,∇ · vh

)
f

+ af

(
un+1
h + un−1

h

2
, vh

)
−(
pn+1
h + pn−1

h

2
,∇ · vh)f + cI(vh, φ

n
h) = (fnf , vh)f ,

(qh,∇ · un+1
h )f = 0.

The stabilization terms in (SDstab) are of the type studied in [10] in the porous
medium and grad-div stabilization, [36], of ut in the fluid region:

∆tg2(φn+1
h − φn−1

h , ψh)H1(Ωp) and

(
∇ ·

un+1
h − un−1

h

2∆t
,∇ · vh

)
f

.

We prove long time, asymptotic stability (over 0 ≤ t < ∞) without any time
step conditions. Let the HDIV (Ωf ) norm be denoted

||u||DIV :=
√
||u||2f + ||∇ · u||2f .

The following trace inequality from Moraiti [37], which holds for our Ωf ,Ωp
with constant 1, is essential:∣∣∣∣∫

I

φu · n̂ds
∣∣∣∣ ≤ ||u||DIV ||φ||H1(Ωp), for all u ∈ Xf , φ ∈ Xp. (trace)

Remark 2 (On the form of the stabilization). To implement exactly the
stabilization term ∆tΛ∗Λ

(
un+1−un−1

)
for the Stokes-Darcy problem, one must

define a linear operator Λ = (Λf ,Λp) : Xh
f ×Xh

p → Xh
f ×Xh

p via the Riesz rep-
resentation theorem by

(Λf (u, φ), v)f + (Λp(u, φ), ψ)p =

∫
I

ψu · n̂ds−
∫
I

φv · n̂ds.

It is not clear even if so defined the result would yield a computationally efficient
method. On the other hand, ignoring technical issues, the stabilization motivated
by ∆tΛ∗Λ

(
un+1−un−1

)
which is most natural in appearance is to include only

a boundary integral term in both equations of the forms

∆tg2

∫
I

(φn+1
h − φn−1

h )ψhds and ∆t

∫
I

(
un+1
h − un−1

h

)
· n̂vh · n̂ds.

It is an open problem to analyze if this stabilization suffices. The inequality
(trace) above suggests that the stabilization in (SDstab) is closely connected.
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Theorem 3 (Unconditional stability of (SDstab)). (SDstab) is stable: for
any N > 0, there holds

1

2

[
‖uN+1

h ‖2DIV + ‖uNh ‖2DIV
]

+ gS0

(
‖φN+1

h ‖2p + ‖φNh ‖2p
)

+∆t

N∑
n=1

[
ν‖∇

(
un+1
h + un−1

h

)
‖2f + gkmin‖∇

(
φn+1
h + φn−1

h

)
‖2p
]

≤ ‖u1
h‖2DIV + ‖u0

h‖2DIV + gS0‖φ1
h‖2p + 2∆t2g2‖φ1

h‖2H1(Ωp)

+gS0‖φ0
h‖2p + 2∆t2g2‖φ0

h‖2H1(Ωp) + 2∆t
[
cI(u

1
h, φ

0
h)− cI(u0

h, φ
1
h)
]

+2∆t

N∑
n=1

[
(fnf , u

n+1
h + un−1

h )f + g(fnp , φ
n+1
h + φn−1

h )p
]
.

Proof. We adapt the proof of Theorem 1 to the setting of (SDstab). Set vh =
2∆t(un+1

h + un−1
h ), ψh = 2∆t(φn+1

h + φn−1
h ), then add and subtract ||unh||2DIV

and gS0‖φnh‖2p + 2∆t2g2‖φnh‖2H1(Ωp). This gives the total energy estimate as

En+1/2 − En−1/2 + 2∆t
(
Cn+1/2 − Cn−1/2

)
+ ∆tDn+1/2 (14)

= 2∆t
(

(fnf , u
n+1
h + un−1

h )f + g(fnp , φ
n+1
h + φn−1

h )
)
.

Here

En+1/2 = ||un+1
h ||2DIV + ||unh||2DIV

+gS0

(
||φn+1

h ||2p + ||φnh||2p
)

+ 2∆t2g2
(
||φn+1

h ||2H1(Ωp) + ||φnh||2H1(Ωp)

)
,

Dn+1/2 = af (un+1
h + un−1

h , un+1
h + un−1

h ) + ap(φ
n+1
h + φn−1

h , φn+1
h + φn−1

h ),

Cn+1/2 = cI(u
n+1
h , φnh)− cI(unh, φ

n+1
h ).

Standard coercivity estimates show that

Dn+1/2 ≥ ν||∇
(
un+1
h + un−1

h

)
||2f + gkmin||∇

(
φn+1
h + φn−1

h

)
||2p.

Sum (14) from n = 1, . . . , N and stability and the stated energy inequality
follows provided

EN+1/2+2∆tCN+1/2 ≥ 1

2

[
‖uN+1

h ‖2DIV + ‖uNh ‖2DIV
]
+gS0

(
‖φN+1

h ‖2p + ‖φNh ‖2p
)
.

Consider the coupling terms. Using (trace)

2∆tCN+1/2 = 2∆tg

∫
I

φNh u
N+1
h · n̂f − φN+1

h uNh · n̂fds

≤ 2∆tg
(
||uN+1

h ||DIV ||φNh ||H1(Ωp) + ||uNh ||DIV ||φ
N+1
h ||H1(Ωp)

)
≤ 1

2

[
||uN+1

h ||2DIV + ||uNh ||2DIV
]

+ 2∆t2g2
[
||φN+1

h ||2H1(Ωp) + ||φNh ||2H1(Ωp)

]
.
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Subtract this from EN+1/2, cancel terms and complete the proof to find, that
indeed

EN+1/2+2∆tCN+1/2 ≥ 1

2

[
‖uN+1

h ‖2DIV + ‖uNh ‖2DIV
]
+gS0

(
‖φN+1

h ‖2p + ‖φNh ‖2p
)
> 0.

3.2. Application to Stokes flow plus a Coriolis force term

The use of (CNLF) in geophysical flows is based on fast-slow wave decom-
positions and time filters, see [3], [4]. There are many complexities in geophysics
we shall avoid in this application by focusing on stability of (CNLFstab) for
Stokes flow plus strong rotation given by a Coriolis force term fC × u:

ut − ν∆u+∇p+ fC × u = f(x, t), and ∇ · u = 0 in Ω,

u = 0 on ∂Ω, and u(x, 0) = u0(x) in Ω.

Choose conforming velocity-pressure FEM spaces Xh, Qh satisfying the usual
discrete inf-sup / LBBh condition for stability of the discrete pressure, e.g.,
[33], [34], [35],

Xh ⊂ X :=
(
H1

0 (Ω)
)d
, Qh ⊂ L2

0(Ω).

We denote the usual L2(Ω) norm and the inner product by ‖ · ‖ and (·, ·).
Let Λu := fC × u. The (CNLFstab) realization is then: find (un+1

h , pn+1
h ) ∈

Xh ×Qh satisfying, for all vh ∈ Xh, qh ∈ Qh,

(
un+1
h − un−1

h

2∆t
, vh

)
+ ∆t

(
Λ(un+1

h − un−1
h ),Λvh

)
+(Λunh, vh) + ν

(
∇un+1

h +∇un−1
h

2
,∇vh

)
(SCStab)

−
(
pn+1
h + pn−1

h

2
,∇ · vh

)
+

(
qh,∇ ·

(
un+1
h + un−1

h

2

))
= (fn, vh).

Theorem 4. (Unconditional Stability). (SCStab) is unconditionally stable.
Specifically, for any N > 0, the energy estimate holds

1
2‖u

N+1‖2 + ‖uN‖2 + 2∆t2‖ΛuN+1‖2 +
∆tν

2

N∑
n=1

‖∇(un+1
h + un−1

h )‖2

≤ ‖u1
h‖2 + ‖u0

h‖2 + 2∆t2(‖Λu1
h‖2 + ‖Λ0

h‖2) + 2∆t(Λu0
h, u

1
h) +

2∆t

ν

N∑
n=1

‖fn‖2∗.

(15)
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Proof. In (SCStab) set vh = un+1
h +un−1

h and multiply through by 2∆t. Using
the same notation as in Theorem 1, this gives, after adding and subtracting
‖unh‖2 + 2∆t2‖Λunh‖2,

En+1/2 − En−1/2 + 2∆t(Cn+1/2 − Cn−1/2)

+∆tν‖∇(un+1
h + un−1

h )‖2 = 2∆t(fn, un+1
h + un−1

h ).

Applying Young’s inequality to the RHS, the above reduces to

En+1/2 − En−1/2 + 2∆t(Cn+1/2 − Cn−1/2)

+
∆tν

2
‖∇(un+1

h + un−1
h )‖2 ≤ 2∆t

ν
‖fn‖2∗,

where ‖fn‖∗ = supvh 6=0,vh∈Xh(fn, vh)/‖∇vh‖.

Sum from n = 1 to N to obtain

EN+1/2 + 2∆tCN+1/2 + ∆tν
2

N∑
n=1

‖∇(un+1
h + un−1

h )‖2 ≤ E1/2 + 2∆tC1/2 + 2∆t
ν

N∑
n=1

‖fn‖2∗.

By the Cauchy-Schwarz inequality, we have

EN+1/2 + 2∆tCN+1/2 ≥ 1
2 ||u

N+1||2 + ||uN ||2 + 2∆t2||ΛuN+1||2,

and the stability inequality (15) follows.

4. Numerical Illustrations

We present two tests of stability, one for Stokes-Darcy and one for Stokes
flow plus strong rotation.

Example 1: Stokes-Darcy. We solve the Stokes-Darcy problem, with and
without stabilization, for small values of the parameter S0 (all other parameters
are set to 1.0) for Tfinal = 10. Tests 1 and 2 use the exact solutions (see
(16)) introduced by Mu and Zhu in [24] satisfying the coupling conditions over
the subdomains Ωf = (0, 1) × (1, 2) and Ωp = (0, 1) × (0, 1). We use Taylor-
Hood elements (P2-P1) for the Stokes problem and piecewise quadratics (P2)
for the Darcy problem. The initial condition and first two terms are chosen to
correspond with the exact solutions.

u(x, y, t) = ((x2(y − 1)2 + y) cos(t), (
2

3
x(1− y)3 + 2− π sin(πx)) cos(t))

p(x, y, t) = (2− π sin(πx)) sin(
π

2
y) cos(t)

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t)

(16)

Forcing terms are set to zero so that the true solution decays to zero rapidly as
t → ∞. Thus any growth in the approximate solution implies instability. All
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(a) (CNLF): weakly unstable
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(b) (SDstab): unconditionally stable

Figure 1: Stokes-Darcy Test 1: S0 = 1.0

tests here were performed using FreeFEM++ [38]. Setting h = ∆t = 0.1 violates
the (CFL) condition for stability of the (CNLF) for Stokes-Darcy method given
in [5]. In Test 1, S0 = 1.0. (SDstab) is stable (Figure 1b) and both modes
converge to zero as predicted, while after a long enough time, (CNLF) becomes
weakly unstable (Figure 1a), as expected. In Test 2, S0 = 10−4. As predicted,
(SDstab) is stable (Figure 2b) while spurious oscillations in the unstable mode
correspond to an increase in system energy of (CNLF) making it unstable
(Figure 2a).

We have preformed tests for other parameter values with the same results:
(CNLF) becomes unstable if (CFL) is violated, sometimes weakly, and some-
times drastically, while (SDstab) remains stable, as predicted in Theorems 1
and 2.

Example 2: Stokes flow + strong rotation. In this example we con-
sider the 2d Stokes problem plus Coriolis forces with a speed of rotation ω =
100. The computational domain is the square [0, 1] × [0, 1]. Let g1(x) =
x2(1 − x2) exp(7x), g2(y) = y2(1 − y)2 and define the initial condition by
u0 = (g1(x)g′2(y),−g′1(x)g2(y)). We solve the problem and plot the kinetic
energy vs time for (CNLF) first without and then with stabilization. As pre-
dicted by the theory, (CNLF) is unstable until ∆t||Λ|| < 1 (see Figure 3a),
whereas (CNLFstab) remains stable for all time steps, as shown in Figure 3b.
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(a) (CNLF): growth in unstable mode
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Figure 2: Stokes-Darcy Test 2: S0 = 10−4

5. Conclusions

The accepted view, e.g., [19], [21], of (CNLF) without additional stabiliza-
tions or time filters is that it has two issues: the CFL condition and the growth
in the unstable mode. Time filters are a wonderfully elegant and modular tool
that damps the unstable mode. Analysis of (CNLF) with the addition of the
Robert-Asselin time filter (CNLF-RA) in [20] shows that stability of (CNLF)
+ time filters remains subject to CFL-type conditions.

We have presented a stabilization that, while not modular, eliminates the
CFL condition and controls the unstable mode. Naturally, when a CFL condi-
tion is grossly violated (as the stability tests here did purposefully), the difficulty
could be shifted from stability to accuracy. Thus, the next important step in
studying (CNLFstab) must be precise error analysis and careful testing of
accuracy for specific applications, like the two in Section 3.
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