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Abstract. In this work we study Crank-Nicolson Leap-Frog (CNLF) methods with fast slow wave
splittings for Navier-Stokes equation plus a Coriolis force term, which is a simplification of geophysical
flows. We present a new stabilized CNLF method where the added stabilization completely removes the
method’s CFL time step condition. We give a comprehensive stability and error analysis. We prove that for
Oseen equation + rotation term, the unstable mode (for which un+1 +un−1 ≡ 0) of CNLF is asymptotically
stable. Numerical results are provided to verify the stability and the convergence of the methods.

1. Introduction. One of the most common time discretizations in atmosphere and
ocean codes is the implicit-explicit combination of the Crank-Nicolson and Leap-Frog meth-
ods, usually abbreviated as CNLF. The usual description is that CN is used to discretize
physical effects corresponding to fast waves and low energy while LF for high energy slow
waves. One issue about this method is that the time step restriction of CNLF can be very
restrictive if the normal splitting is not perfectly done, i.e., if some fast waves are present
in the LF terms. Our aim herein is to provide an analytic, nonlinear energy stability and
convergence analysis of a stabilized CNLF introduced in [1], which is unconditionaly stable,
based on a splitting of the NSE + rotation/Coriolis force motivated by the above descrip-
tion. This work is only one step to the very complex motivating application and many open
questions (some surveyed in Section 1.1 below) remain.

Consider thus the NSE + a rotation/Coriolis force, a great simplification of the geo-
physical flow, [2], on a bounded domain subject to either no slip (the typical case herein)
or periodic boundary conditions:

ut + u · ∇u− ν∆u+∇p+ fC × u = f(x, t) in Ω,

∇ · u = 0 in Ω,

u(x, 0) = u0(x) in Ω and u = 0 on ∂Ω.

(1.1)

Suppressing the spatial discretization, we must identify the parts to be discretized by
CN vs. LF. Let U(x) denote a smooth, averaged fluid velocity. Rewrite the momentum
equation as

ut +N(u, p) + Λ(u) = f(x, t), and ∇ · u = 0, in Ω,

where

N(u, p) := (u− U) · ∇u− ν∆u+∇p (fast wave component),

Λ(u) := U · ∇u+ fC × u (slow wave component).

We shall discretize in time by CNLF using the above splitting. The first time discretization
we study is CNLF based on FAst-SLow splitting, which we call FASL: given u0, u1, p1

(computed by some other method), find u2, u3, · · ·, p2, p3, · · · satisfying

un+1 − un−1

2∆t
+N(

un+1 + un−1

2
,
pn+1 + pn−1

2
) + Λ(un) = fn, (1.2)

∇ · un+1 = 0, in Ω,

and un+1 = 0, on ∂Ω.
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Here selected mean flow U(x) is assumed to be divergence free, satisfy the same boundary
conditions as u(x, t) and stationary. The stability region of LF is the interval {z : Re(z) = 0
and −1 ≤ Im(z) ≤ +1}. Thus, root condition analysis, [3], [4], suggests that skew symmetry
of Λ is essential and for such Λ the time step restriction

∆t||Λ|| ≤ 1 or ∆t

(
|U |
∆x

+ |fC |
)
≤ const (1.3)

is necessary.
This motivates us to develop for this application a stabilization of CNLF introduced in

[1] (STAFASL), which eliminates all restrictions for stability while maintaining an accuracy
comparable to that of FASL. Our scheme reads: given u0, u1, p1 (computed by some other
method), find u2, u3, · · ·, p2, p3, · · · satisfying

un+1 − un−1

2∆t
+N(

un+1 + un−1

2
,
pn+1 + pn−1

2
)

+Λ(un) + 2∆tΛ∗Λ(un+1 − un−1) = fn, (1.4)

∇ · un+1 = 0.

The stabilization method was introduced in [1] and its stability was proven for the time
dependent Stokes problem. The result is extended here to the fast-slow decomposition of
NSE + rotation force, still without any CFL type time step restriction, with a new and
comprehensive error analysis given.

Generally, it is believed that CNLF will damp only the mode un+1 + un−1; there is no
damping in the unstable mode where un+1 + un−1 ≡ 0. Roundoff error can lead to growth
in the unstable mode, spurring development of corrective time filters, [2], [5], [6], [7]. For
the linearized form of NSE (Oseen equation), we prove that this is not the case: CNLF
discretization also damps the unstable mode. This extends a result from [8] to the flow
problem (1.1). The damping of unstable mode for full NSE is an open question.

Our paper is organized as follows. In Section 2, we give necessary definitions and
state well-known results which are used throughout the paper. In Section 3, for spatial
discretization in FASL by a variational method (we specify FEMs but the same proof holds
for Galerkin spectral methods and Thom’s finite difference methods), we prove that FASL
is stable in the absence of round off errors under CFL condition, see Theorem 3.1. The
unconditional stability of STAFASL is established in Section 4. In Section 5, we prove that
for Oseen equation + rotation term, the unstable mode of CNLF is asymptotically stable.
Section 6 is devoted for a complete convergence analysis of STAFASL. Finally, numerical
experiments are given in Section 7 for verifying our theoretical results.

1.1. Previous work. The implicit-explicit Crank-Nicolson and Leap-Frog method is
widely used in atmosphere, ocean and climate codes, e.g., [5], [6], [7], [9] and has recently
been used for uncoupling groundwater-surface water flows, [10]. Stability of CNLF by root
conditions was proven in 1963 [3] and by energy methods for systems in [4]. Two related
stability questions remain. First, the time step restriction (1.3) from the LF component can
be too restrictive if the normal splitting into fast but low energy modes and slow but high
energy modes is not perfectly done and if the problem parameters are too big. Second, the
unstable mode (for which un+1 + un−1 ≡ 0) of LF is not damped by CN. Thus, modular
time filters, like the Roberts-Asselin-Williams filter [5], [6], [7], have been developed to deal
with this issue. The stabilized CNLF scheme presented in this paper addresses both of the
issues: it is unconditionally (no time step condition) stable and the unstable mode, while
not eliminated, is controlled for the linearized model. Stabilized CNLF, like CNLF, is a
3 level method and approximations are needed at the first two time steps to appropriate
accuracy, [11]. The stabilization in stabilized CNLF herein is similar in spirit to [12], [13],
[14]. For a general theory of IMEX methods see [15], [16], [17]. The instability of CNLF
for nonautonomous systems was studied in [18].
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2. Notation and preliminaries. Let Ω be an open, regular domain in Rd (d =
2 or 3). The Lp(Ω) norms and the Sobolev W k

p (Ω) norms are denoted by ‖ · ‖Lp and ‖ · ‖Wk
p

respectively. In particular, the L2(Ω) norm and the inner product are denoted by ‖ · ‖ and
(·, ·). Hk(Ω) is used to represent the Sobolev space W k

2 (Ω), with norm ‖ · ‖k. For functions
v(x, t) defined on (0, T ), we define (1 ≤ m <∞)

‖v‖∞,k := EssSup[0,T ]‖v(t, ·)‖k, and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt

)1/m

.

The space H−k(Ω) is the dual space of bounded linear functions on Hk
0 (Ω). A norm for

H−1(Ω) is given by

‖f‖−1 = sup
06=v∈H1

0 (Ω)

(f, v)

‖∇v‖
.

Let X be the velocity space and Q be the pressure space:

X := (H1
0 (Ω))d, Q := L2

0(Ω).

The space of divergence free functions is

V := {v ∈ X : (∇ · v, q) = 0 , ∀q ∈ Q}.

The norm on V ∗ (the dual of V ) is defined as

‖f‖∗ = sup
06=v∈V

(f, v)

‖∇v‖
.

A weak formulation of (1.1) is: Find u : [0, T ] → X, p : [0, T ] → Q for a.e. t ∈ (0, T ]
satisfying:

(ut, v) + (u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) + (fC × u, v) = (f, v) , ∀v ∈ X
u(x, 0) = u0(x) in X and (∇ · u, q) = 0, ∀q ∈ Q.

We denote conforming velocity, pressure finite element spaces based on an edge to edge
triangulation of Ω (with maximum triangle diameter h) by

Xh ⊂ X , Qh ⊂ Q.

We assume that Xh and Qh satisfy the usual discrete inf-sup condition. Taylor-Hood el-
ements, discussed in [19], [20], are one commonly used choice of velocity-pressure finite
element spaces. The discretely divergence free subspace of Xh is

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0 , ∀qh ∈ Qh}.

We assume the mesh and finite element spaces satisfy the following inverse inequality (typical
for locally quasi-uniform meshes and standard FEM spaces, see, e.g., [19]): for all vh ∈ Xh

h‖∇vh‖ ≤ cinv‖vh‖

where cinv depends only on the shape (he/ρe, he = diam(e) and ρe is the diameter of the
largest ball that can be inscribed in e) of the elements, [21].
Define the usual explicitly skew symmetric trilinear form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v).
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Then for any uh, vh, wh ∈ Xh,

b∗(uh, vh, wh) =

∫
Ω

uh · ∇vh · wh dx+
1

2

∫
Ω

(∇ · uh)(vh · wh) dx, (2.1)

which can be easily proved by integrating by parts and using uh|∂Ω = 0.

b∗(u, v, w) also satisfies the bound

b∗(u, v, w) ≤ C‖u‖ 1
2
‖∇v‖‖∇w‖, for all u, v, w ∈ X.

3. Stability of FASL with the CFL condition. In this section we prove nonlinear,
long time stability of FASL under a CFL type condition for Navier-Stokes equations with
a Coriolis term.

The fully discrete approximation we study of (1.1) with FASL is: Given un−1
h , unh, p

n−1
h , pnh,

find un+1
h ∈ Xh, pn+1

h ∈ Qh satisfying

(
un+1
h − un−1

h

2∆t
, vh) + b∗(

un+1
h + un−1

h

2
− U,

un+1
h + un−1

h

2
, vh)

−(
pn+1
h + pn−1

h

2
,∇ · vh) + ν(∇

un+1
h + un−1

h

2
,∇vh) (3.1)

+b∗(U, unh, vh) + (fC × unh, vh) = (fn, vh), ∀vh ∈ Xh,

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh.

The selection of the averaged velocity is necessarily application dependent. Many choices
of U are possible; the theorem below only needs U = U(x) and U · n̂|∂Ω = 0. The compu-
tational aim is to choose so that the nonlinearity in the implicit CN discretized terms to be
smaller.

Theorem 3.1 (Stability of FASL). Consider FASL method. Suppose the following
timestep restriction holds

∆t < (‖U‖∞cinvh−1 + ‖fC‖∞)−1 , (3.2)

then for any N ≥ 1,

β

2

(
‖uN+1

h ‖2 + ‖uNh ‖2
)

+

N∑
n=1

ν∆t

∥∥∥∥∇un+1
h + un−1

h

2

∥∥∥∥2

≤
N∑
n=1

∆t

ν
‖fn‖2∗

+
1

2

(
‖u1

h‖2 + ‖u0
h‖2
)

+ ∆tb∗(U, u0
h, u

1
h) + ∆t(fC × u0

h, u
1
h),

(3.3)

where β = 1−∆t(‖U‖∞cinvh−1 + ‖fC‖∞) .

Proof. Set vh =
un+1
h +un−1

h

2 in (3.1). Multiplying through by 2∆t and applying Young’s
inequality to the RHS, we get

1

2
(‖un+1

h ‖2 − ‖un−1
h ‖2) + ∆tb∗(U, unh, u

n+1
h + un−1

h ) (3.4)

+∆t(fc × unh, un+1
h + un−1

h ) + ν∆t

∥∥∥∥∇un+1
h + un−1

h

2

∥∥∥∥2

≤ ∆t

ν
‖fn‖2∗.

We rearrange the terms on LHS of (3.4). Firstly,

1

2
(‖un+1

h ‖2 − ‖un−1
h ‖2) =

1

2
(‖un+1

h ‖2 + ‖unh‖2)− 1

2
(‖unh‖2 + ‖un−1

h ‖2).
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The next two terms could be rewritten as follows, with notice that they are skew-symmetric

∆tb∗(U, unh, u
n+1
h + un−1

h ) = ∆tb∗(U, unh, u
n+1
h )−∆tb∗(U, un−1

h , unh),

∆t(fC × unh, un+1
h + un−1

h ) = ∆t(fC × unh, un+1
h )−∆t(fC × un−1

h , unh).

Summing up (3.4) from n = 1 to N , it gives

1

2
(‖uN+1

h ‖2 + ‖uNh ‖2) + ∆tb∗(U, uNh , u
N+1
h ) + ∆t(fC × uNh , uN+1

h )

+

N∑
n=1

ν∆t

∥∥∥∥∇un+1
h + un−1

h

2

∥∥∥∥2

≤
N∑
n=1

∆t

ν
‖fn‖2∗ +

1

2
(‖u1

h‖2 + ‖u0
h‖2)

+ ∆tb∗(U, u0
h, u

1
h) + ∆t(fC × u0

h, u
1
h).

Denote

εn+ 1
2 =

1

2
(‖un+1

h ‖2 + ‖unh‖2) + ∆tb∗(U, unh, u
n+1
h ) + ∆t(fC × unh, un+1

h ).

Applying the inverse inequality to the trilinear term gives

∆tb∗(U, unh, u
n+1
h ) ≤ ∆t‖U‖∞cinvh−1‖unh‖‖un+1

h ‖. (3.5)

The other skew symmetric term can be estimated as follows

∆t(fC × unh, un+1
h ) ≤ ∆t‖fC‖∞‖unh‖‖un+1

h ‖. (3.6)

Hence,

εn+ 1
2 ≥ 1

2
(‖un+1

h ‖2 + ‖unh‖2)

−∆t‖U‖∞cinvh−1‖unh‖‖un+1
h ‖ −∆t‖fC‖∞‖unh‖‖un+1

h ‖

≥
(

1

2
− 1

2
∆t(‖U‖∞cinvh−1 + ‖fC‖∞)

)
‖unh‖2 (3.7)

+

(
1

2
− 1

2
∆t(‖U‖∞cinvh−1 + ‖fC‖∞)

)
‖un+1

h ‖2

≥ (1−∆t(‖U‖∞cinvh−1 + ‖fC‖∞))

(
1

2
‖unh‖2 +

1

2
‖un+1

h ‖2
)
.

Let β = (1 − ∆t(‖U‖∞cinvh−1 + ‖fC‖∞)). Then under the timestep condition, (3.3)
follows.

4. Stability of STAFASL. In this section, we prove the unconditional stability of
STAFASL for Navier-Stokes equation with a Coriolis term. The added stabilization elimi-
nates the restriction on the timestep from CNLF, which gives us the unconditional stability.
Same as in Theorem 3.1, U only needs to satisfy U = U(x) and U · n̂|∂Ω = 0.

With FEM discretizations, we apply the usual explicitly skew symmetric trilinear form
defined in Section 2 for both nonlinear parts discretized by CN and LF respectively to
maintain the skew symmetry of the nonlinear terms. For the part discretized by LF, by
(2.1), we have

b∗(U, unh, vh) =

∫
Ω

U · ∇unh · vh dx+
1

2

∫
Ω

(∇ · U)(unh · vh) dx, (4.1)

Therefore for compactness, define the linear, skew symmetric operator

Λh(v) := U · ∇v +
1

2
(∇ · U) v + fC × v.
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Then by (4.1),

b∗(U, unh, vh) + (fC × unh, vh) = (Λh(unh), vh) , (4.2)

Note by (3.5) and (3.6) in the proof of Theorem 3.1, we derive an upper bound on the norm
of Λh

‖Λh‖ ≤ ‖U‖∞cinvh−1 + ‖fC‖∞, (4.3)

and name (‖U‖∞cinvh−1 + ‖fC‖∞)−1 the CFL limit.
The stabilization we study is 2∆tΛ∗hΛh(un+1

h −un−1
h ) and STAFASL scheme reads: find

(un+1
h , pn+1

h ) ∈ Xh ×Qh satisfying, for all vh ∈ Xh, qh ∈ Qh,(
un+1
h − un−1

h

2∆t
, vh

)
+ b∗(

un+1
h + un−1

h

2
− U,

un+1
h + un−1

h

2
, vh)

+b∗(U, unh, vh) + (fC × unh, vh) + ν(∇
un+1
h + un−1

h

2
,∇vh) (4.4)

−(
pn+1
h + pn−1

h

2
,∇ · vh) + 2∆t

(
Λh(un+1

h − un−1
h ),Λh(vh)

)
= (fn, vh),

(∇ · un+1
h , qh) = 0.

Theorem 4.1 (Unconditional Stability). STAFASL is unconditionally stable. Specif-
ically, for any N ≥ 1, there holds

1

2
‖uN+1

h ‖2 +
1

4
‖uNh ‖2 + ∆t2‖Λh(uN+1

h )‖2 + 2∆t2‖Λh(uNh )‖2

+∆t

N∑
n=1

ν‖∇
un+1
h + un−1

h

2
‖2 ≤ 1

2
‖u1

h‖2 +
1

2
‖u0

h‖2 + 2∆t2‖Λh(u1
h)‖2

+ 2∆t2‖Λh(u0
h)‖2 + ∆t(Λh(u0

h), u1
h) +

∆t

ν

N∑
n=1

‖fn‖2∗.

Proof. In (4.4) set vh =
un+1
h +un−1

h

2 and multiply through by 2∆t. This gives, after

adding and subtracting 1
2 ||u

n
h||2 + 2∆t2||Λh(unh)||2,(

1

2
‖un+1

h ‖2 +
1

2
‖unh‖2 + 2∆t2‖Λh(un+1

h )‖2 + 2∆t2‖Λh(unh)‖2
)

−
(

1

2
‖unh‖2 +

1

2
‖un−1

h ‖2 + 2∆t2‖Λh(unh)‖2 + 2∆t2‖Λh(un−1
h )‖2

)
(4.5)

+∆tb∗(U, unh, u
n+1
h + un−1

h ) + ∆t(fC × unh, un+1
h + un−1

h )

+2∆tν‖∇
un+1
h + un−1

h

2
‖2 = 2∆t(fn,

un+1
h + un−1

h

2
).

Applying Young’s inequality to the RHS, (4.5) reduces to

(
1

2
‖un+1

h ‖2 +
1

2
‖unh‖2 + 2∆t2‖Λh(un+1

h )‖2 + 2∆t2‖Λh(unh)‖2
)

−
(

1

2
‖unh‖2 +

1

2
‖un−1

h ‖2 + 2∆t2‖Λh(unh)‖2 + 2∆t2‖Λh(un−1
h )‖2

)
(4.6)

+∆tb∗(U, unh, u
n+1
h + un−1

h ) + ∆t(fC × unh, un+1
h + un−1

h )

+∆tν‖∇
un+1
h + un−1

h

2
‖2 ≤ ∆t

ν
‖fn‖2∗.
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By integration by parts we have

b∗(U, unh, u
n+1
h + un−1

h ) = (U · ∇unh +
1

2
(∇ · U)unh, u

n+1
h + un−1

h ).

Thus,

b∗(U, unh, u
n+1
h + un−1

h ) + (fC × unh, un+1
h + un−1

h ) = (Λh(unh), un+1
h + un−1

h ).

Define

Cn+ 1
2 := (Λh(unh), un+1

h ), and

En+ 1
2 :=

1

2
‖un+1

h ‖2 +
1

2
‖unh‖2 + 2∆t2‖Λh(un+1

h )‖2 + 2∆t2‖Λh(unh)‖2.

Using skew symmetry of Λh, (4.6) can be rewritten as

En+ 1
2 − En− 1

2 + ∆t(Cn+ 1
2 − Cn− 1

2 ) (4.7)

+∆tν‖∇
un+1
h + un−1

h

2
‖2 ≤ ∆t

ν
‖fn‖2∗.

Summing up (4.7) from n = 1 to N results in

EN+ 1
2 + ∆tCN+ 1

2 + ∆t

N∑
n=1

ν‖∇
un+1
h + un−1

h

2
‖2 (4.8)

≤ E1− 1
2 + ∆tC1− 1

2 +
∆t

ν

N∑
n=1

‖fn‖2∗.

By Cauchy-Schwarz inequality

∆tCN+ 1
2 = ∆t(Λh(uNh ), uN+1

h ) = −∆t(Λh(uN+1
h ), uNh )

≤ ∆t2‖Λh(uN+1
h )‖2 +

1

4
‖uNh ‖2,

and the stability follows.

5. Asymptotic stability of the unstable mode for Oseen equation plus rota-
tion term. In this section, we show that the unstable mode of CNLF is actually stable for
the time dependent Oseen problem + rotation/Coriolis term:

ut + U · ∇u− ν∆u+∇p+ fC × u = f(x, t) in Ω,

∇ · u = 0 in Ω,

u(x, 0) = u0(x) in Ω and u = 0 on ∂Ω.

(5.1)

Here, U(x) is assumed to be a smooth, divergence free velocity field. The stability of unstable
mode of CNLF for full NSE + rotation term is an open question.

5.1. The damping of unstable mode of FASL scheme. The corresponding FASL
time stepping method for (5.1) is: Given un−1

h , unh, p
n−1
h , pnh, find un+1

h ∈ Xh, pn+1
h ∈ Qh

satisfying

(
un+1
h − un−1

h

2∆t
, vh)− (

pn+1
h + pn−1

h

2
,∇ · vh) + ν(∇

un+1
h + un−1

h

2
,∇vh)

+b∗(U, unh, vh) + (fC × unh, vh) = (fn, vh), ∀vh ∈ Xh, (FASL-Oseen)

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh.
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Theorem 5.1. Consider (FASL-Oseen). Suppose the following conditions hold,

∆t < CFL limit, (5.2)

then both the stable mode and the unstable modes are stable. In particular, if the body force
f ≡ 0, all modes are asymptotically stable:

un+1
h + un−1

h −→ 0 and un+1
h − un−1

h −→ 0 as n −→∞. (5.3)

Proof. The only different term (
un+1
h +un−1

h

2 − U) · ∇un+1
h +un−1

h

2 of NSE from the time

dependent Oseen problem vanishes after taking inner product with
un+1
h +un−1

h

2 . Therefore
we use the stability results of Theorem 3.1 without proving. As in the proof of Theorem
3.1, we have for the time dependent Oseen problem with Coriolis term

εn+ 1
2 − εn− 1

2 + ν∆t‖∇
un+1
h + un−1

h

2
‖2 ≤ ∆t

ν
‖fn‖2∗, (5.4)

where

εn+ 1
2 =

1

2
(‖un+1

h ‖2 + ‖unh‖2) + ∆tb∗(U, unh, u
n+1
h ) + ∆t(fC × unh, un+1

h ).

Under condition (5.2), which is exactly the same as (3.2), we have the following stability
result

β

(
1

2
‖uN+1

h ‖2 +
1

2
‖uNh ‖2

)
+

N∑
n=1

ν∆t

∥∥∥∥∇un+1
h + un−1

h

2

∥∥∥∥2

(5.5)

≤
N∑
n=1

∆t

ν
‖fn‖2∗ +

1

2

(
‖u1

h‖2 + ‖u0
h‖2
)

+ ∆tb∗(U, u0
h, u

1
h) + ∆t(fC × u0

h, u
1
h).

where β = (1 − ∆t(‖U‖∞cinvh−1 + ‖fC‖∞)). The stable mode is stable. In particular, if
the body force f = 0, dropping nonnegative terms in the LHS, then (5.5) reduces to

N∑
n=1

∥∥∥∥∇un+1
h + un−1

h

2

∥∥∥∥2

≤ C(ν, u0
h, u

1
h). (5.6)

C(ν, u0
h, u

1
h) is independent of N , so letting N −→∞ gives

‖∇(un+1
h + un−1

h )‖ −→ 0 as n −→∞. (5.7)

By Poincaré inequality, we have

‖un+1
h + un−1

h ‖ −→ 0 as n −→∞. (5.8)

Next we prove, under the same condition, the unstable mode is also stable. Set vh =
un+1
h − un−1

h in (FASL-Oseen), multiply though by 2δ∆t, where δ > 0, and then add and
subtract δ∆t‖unh‖2, (FASL-Oseen) becomes

δν∆t(‖∇un+1
h ‖2 + ‖∇unh‖2)− δν∆t(‖∇unh‖2 + ‖∇un−1

h ‖2)

+2δ∆tb∗(U, unh, u
n+1
h − un−1

h ) + 2δ∆t(fC × unh, un+1
h − un−1

h ) (5.9)

+δ‖un+1
h − un−1

h ‖2 = 2δ∆t(fn, un+1
h − un−1

h ).

Denote

Dn+ 1
2 = εn+ 1

2 + δν∆t(‖∇un+1
h ‖2 + ‖∇unh‖2).
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Adding (5.4) and (5.9) and applying Cauchy-Schwarz and Young’s inequalities give, for any
α, 0 < α < 1,

Dn+ 1
2 −Dn− 1

2 + ν∆t‖∇
un+1
h + un−1

h

2
‖2 + αδ‖un+1

h − un−1
h ‖2 (5.10)

+2δ∆t(Λh(unh), un+1
h − un−1

h ) ≤ ∆t

ν
‖fn‖2∗ +

δ∆t2

α
‖fn‖2.

Recall that

Λh(v) := U · ∇v +
1

2
(∇ · U) v + fC × v.

Summing (5.10) from n = 1 to N gives

DN+ 1
2 +

N∑
n=1

[
ν∆t‖∇

un+1
h + un−1

h

2
‖2 + αδ‖un+1

h − un−1
h ‖2

]
(5.11)

+BN ≤ D1+ 1
2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ +

δ∆t2

α
‖fn‖2

]
,

where

BN =

N∑
n=1

2δ∆t
(
Λh(unh), un+1

h − un−1
h

)
.

Let C∞ = (‖U‖∞cinvh−1 + ‖fC‖∞). Using (3.5) and (3.6) from the proof of Theorem 3.1,
we have the following bound on BN

BN =

N∑
n=1

2δ∆t
(
Λh(unh), un+1

h − un−1
h

)
= 2δ∆t

(
Λh(u1

h), u2
h − u0

h

)
+2δ∆t

N∑
n=2

[
1

2

(
Λh(unh − un−2

h ), un+1
h − un−1

h

)
+

1

2

(
Λh(unh + un−2

h ), un+1
h − un−1

h

)]

≤ 2δ∆t
(
Λh(u1

h), u2
h − u0

h

)
+ 2δ∆t

N∑
n=2

[
1

2
C∞‖unh − un−2

h ‖‖un+1
h − un−1

h ‖

+
1

2
C∞‖unh + un−2

h ‖‖un+1
h − un−1

h ‖
]

(5.12)

≤ 2δ∆t
(
Λh(u1

h), u2
h − u0

h

)
+ 2δ∆t

N∑
n=2

[
1

2
C∞

(
1

2
‖unh − un−2

h ‖2 +
1

2
‖un+1

h − un−1
h ‖2

)
+

1

2
C∞

(
1

2ε
‖unh + un−2

h ‖2 +
ε

2
‖un+1

h − un−1
h ‖2

)]
,

≤ 2δ∆t
(
Λh(u1

h), u2
h − u0

h

)
+ 2δ∆t

N∑
n=1

[
1

2
C∞‖un+1

h − un−1
h ‖2

+C∞

(
C

ε
‖∇

un+1
h + un−1

h

2
‖2 +

ε

4
‖un+1

h − un−1
h ‖2

)]
,

where 0 < ε < 1. Plugging (5.12) into (5.11) gives

DN+ 1
2 + ∆t(ν − 2δC∞C

ε
)

N∑
n=1

‖∇
un+1
h + un−1

h

2
‖2
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+δ
(
α− (∆tC∞ +

ε∆tC∞
2

)
) N∑
n=1

‖un+1
h − un−1

h ‖2 (5.13)

≤ 2δ∆t
(
Λh(u1

h), u2
h − u0

h

)
+D1+ 1

2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ +

δ∆t2

α
‖fn‖2

]
.

Under the conditions

δ <
εν

CC∞
and ∆t <

α

1 + ε
2

C−1
∞ , (5.14)

both the stable and the unstable modes are stable. Since α and ε are arbitrary in (0, 1), the
second condition in (5.14) is equivalent to ∆t < C−1

∞ . This is the same condition, (3.2), to
ensure stability of (FASL) in Theorem 3.1 and therefore also a sufficient condition for the
stability of the time dependent Oseen problem. δ > 0 is also arbitrary, so we can always
pick δ to have the first condition in (5.14) satisfied. By Theorem 3.1, under the time step

restriction (5.2), εN+ 1
2 is positive and therefore DN+ 1

2 is also positive:

DN+ 1
2 ≥ β

(
1

2
‖uN+1

h ‖2 +
1

2
‖uNh ‖2

)
+ δν∆t(‖∇uN+1

h ‖2 + ‖∇uNh ‖2). (5.15)

Dropping nonnegative terms in LHS of (5.13) gives

δ
(
α− (∆tC∞ +

ε∆tC∞
2

)
) N∑
n=1

‖un+1
h − un−1

h ‖2 (5.16)

≤ 2δ∆t
(
Λh(u1

h), u2
h − u0

h

)
+D1+ 1

2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ +

δ∆t2

α
‖fn‖2

]
.

So the unstable mode is also stable. In particular, assume the body force f = 0, dropping
some nonnegative terms, (5.16) reduces to

N∑
n=1

‖un+1
h − un−1

h ‖2 < C(δ, ε, ν, u0
h, u

1
h) <∞. (5.17)

C(δ, ε, ν, u0
h, u

1
h) is independent of N , so letting N −→∞ gives

‖un+1
h − un−1

h ‖2 −→ 0 as n −→∞. (5.18)

This completes the proof of Theorem 5.1.

5.2. The damping of unstable mode for STAFASL scheme. The stabilization
we added to FASL eliminates the time step condition, controlling the stable mode. We next
prove that this stabilization also eliminates the time step restriction for Oseen problem plus
a rotation/Coriolis term, controlling both the stable and unstable modes.

The corresponding STAFASL time stepping method for (5.1) is: Given un−1
h , unh,

pn−1
h , pnh, find un+1

h ∈ Xh, pn+1
h ∈ Qh satisfying

(
un+1
h − un−1

h

2∆t
, vh)− (

pn+1
h + pn−1

h

2
,∇ · vh) (STAFASL-Oseen)

+ν(∇
un+1
h + un−1

h

2
,∇vh) + 2∆t(Λh(un+1 − un−1),Λh(vh))

+b∗(U, unh, vh) + (fC × unh, vh) = (fn, vh), ∀vh ∈ Xh,

(∇ · un+1
h , qh) = 0, ∀qh ∈ Qh.
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Theorem 5.2. Consider (STAFASL-Oseen). Both the stable mode and the unstable
modes are unconditionally stable. In particular, if the body force f ≡ 0, all modes are
unconditionally, asymptotically stable:

un+1
h + un−1

h −→ 0 and un+1
h − un−1

h −→ 0 as n −→∞. (5.19)

Proof. The regular stability proof will follow exactly the proof of Theorem 4.1 and we
will use its results without proving. As in the proof of Theorem 4.1, we have

En+ 1
2 − En− 1

2 + ∆t(Cn+ 1
2 − Cn− 1

2 ) (5.20)

+∆tν‖∇
un+1
h + un−1

h

2
‖2 ≤ ∆t

ν
‖fn‖2∗,

where

Cn+ 1
2 := (Λh(unh), un+1

h ), and

En+ 1
2 :=

1

2
‖un+1

h ‖2 +
1

2
‖unh‖2 + 2∆t2‖Λh(un+1

h )‖2 + 2∆t2‖Λh(unh)‖2.

Now set vh = un+1
h − un−1

h in (STAFASL-Oseen), multiply through by 2δ∆t, where δ > 0,
and then add and subtract δ∆t‖unh‖2, (STAFASL-Oseen) becomes

δν∆t(‖∇un+1
h ‖2 + ‖∇unh‖2)− δν∆t(‖∇unh‖2 + ‖∇un−1

h ‖2)

+2δ∆tb∗(U, unh, u
n+1
h − un−1

h ) + 2δ∆t(fC × unh, un+1
h un−1

h ) (5.21)

+δ‖un+1
h − un−1

h ‖2 + 4δ∆t2‖Λh(un+1
h − un−1

h )‖2 = 2δ∆t(fn, un+1
h − un−2

h ).

Denote

Dn+ 1
2 = En+ 1

2 + ∆tCn+ 1
2 + δν∆t(‖∇un+1

h ‖2 + ‖∇unh‖2).

Adding (5.20) and (5.21) and applying Cauchy-Schwarz inequality to the RHS gives

Dn+ 1
2 −Dn− 1

2 + ν∆t‖∇
un+1
h + un−1

h

2
‖2 +

δ

2
‖un+1

h − un−1
h ‖2

+4δ∆t2‖Λh(un+1
h − un−1

h )‖2 + 2δ∆t(Λh(unh), un+1
h − un−1

h ) (5.22)

≤ ∆t

ν
‖fn‖2∗ + 2δ∆t2‖fn‖2.

Summing (5.22) from n = 1 to N gives

DN+ 1
2 +

N∑
n=1

[
ν∆t‖∇

un+1
h + un−1

h

2
‖2 +

δ

2
‖un+1

h − un−1
h ‖2 (5.23)

+4δ∆t2‖Λh(un+1
h − un−1

h )‖2
]

+BN ≤ D1+ 1
2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ + 2δ∆t2‖fn‖2

]
,

where

BN =

N∑
n=1

2δ∆t(Λh(unh), un+1
h − un−1

h ).
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For BN , applying Young’s inequality gives, for any ε, 0 < ε < 1
2

BN ≤ δε
N∑
n=1

‖un+1
h − un−1

h ‖2 +
δ

ε

N∑
n=1

∆t2‖Λh(unh)‖2. (5.24)

The second term on the RHS can be rewritten as

‖Λh(unh)‖2 = ‖Λh(
unh + un−2

h

2
) + Λh(

unh − u
n−2
h

2
)‖2

= 2‖Λh(
unh + un−2

h

2
)‖2 + 2‖Λh(

unh − u
n−2
h

2
)‖2 − ‖Λh(un−2

h )‖2.

Then (5.24) becomes

BN ≤ δε
N∑
n=1

‖un+1
h − un−1

h ‖2 +
δ

ε
∆t2‖Λh(u1

h)‖2 − δ

ε

N∑
n=2

∆t2‖Λh(un−2
h )‖2

+
δ

2ε

N∑
n=2

∆t2
(
‖Λh(unh + un−2

h )‖2 + ‖Λh(unh − un−2
h )‖2

)
. (5.25)

After shifting the index of the second sum, we obtain

BN ≤ δε
N∑
n=1

‖un+1
h − un−1

h ‖2 +
δ

ε
∆t2‖Λh(u1

h)‖2 − δ

ε

N∑
n=2

∆t2‖Λh(un−2
h )‖2

+
δ

2ε

N−1∑
n=1

∆t2
(
‖Λh(un+1

h + un−1
h )‖2 + ‖Λh(un+1

h − un−1
h )‖2

)
. (5.26)

Plugging (5.26) into (5.23) gives

DN+ 1
2 + ν∆t‖∇

uN+1
h + uN−1

h

2
‖2 +

δ

2

N∑
n=1

‖un+1
h − un−1

h ‖2

+

N−1∑
n=1

[
ν∆t‖∇

un+1
h + un−1

h

2
‖2 − δ

2ε
∆t2‖Λh(un+1

h + un−1
h )‖2

]
(5.27)

+

N−1∑
n=1

[
4δ∆t2‖Λh(un+1

h − un−1
h )‖2 − δ

2ε
∆t2‖Λh(un+1

h − un−1
h )‖2

]

≤ D1+ 1
2 +

δ

ε
∆t2‖Λh(u1

h)‖2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ + 2δ∆t2‖fn‖2

]
.

Under the following conditions

∆t‖Λh‖2∗ <
εν

2δ
and 4 >

1

2ε
, (5.28)

we have the stability of both the stable and unstable modes. Since ε in (0, 1
2 ), we pick ε = 1

4
and the second condition is satisfied. Note ‖Λh‖∗ is bounded

‖Λh‖∗ ≤ C(‖U‖+ ‖∇ · U‖+ ‖fC‖),

and δ > 0 is arbitrary. So we can always pick δ, such that

δ <
ν

8∆t‖Λh‖2∗
.
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Let δ = ν
16∆t‖Λh‖2∗

. Then (5.27) reduces to

DN+ 1
2 + ν∆t‖∇

uN+1
h + uN−1

h

2
‖2 +

δ

2

N∑
n=1

‖un+1
h − un−1

h ‖2

+
ν∆t

2

N−1∑
n=1

‖∇
un+1
h + un−1

h

2
‖2 + 2δ∆t2

N−1∑
n=1

‖Λh(un+1
h − un−1

h )‖2 (5.29)

≤ D1+ 1
2 + 4δ∆t2‖Λh(u1

h)‖2 +

N∑
n=1

[
∆t

ν
‖fn‖2∗ + 2δ∆t2‖fn‖2

]
.

By Theorem 4.1, EN+ 1
2 + ∆tCN+ 1

2 is positive and therefore DN+ 1
2 is also positive

DN+ 1
2 ≥ 1

2
‖uN+1

h ‖2 +
1

4
‖uNh ‖2 + ∆t2‖Λh(uN+1

h )‖2 (5.30)

+2∆t2‖Λh(uNh )‖2 + δν∆t(‖∇uN+1
h ‖2 + ‖∇uNh ‖2).

In particular, assume the body force f = 0, dropping some nonnegative term, (5.29) reduces
to

N∑
n=1

[
‖un+1

h + un−1
h ‖2 + ‖un+1

h − un−1
h ‖2

]
< C(ν, u0

h, u
1
h) <∞. (5.31)

C(ν, u0
h, u

1
h) is constant independent of N , so letting N −→∞ gives

‖un+1
h + un−1

h ‖2 −→ 0 and ‖un+1
h − un−1

h ‖2 −→ 0 as n −→∞.

This completes the proof of Theorem 5.2.

6. Error Analysis for STAFASL. We proceed to give an a priori error estimate for
the approximations studied herein. Due to the intricateness of the proofs, for the compact-
ness, we only analyze the error of STAFASL scheme. With minor modifications, we will
get the analogous results of convergence rate for FASL.

Let tn := n∆t, n = 0, 1, 2, ..., NT , and T := NT∆t. Denote un = u(·, tn). We introduce
the following discrete norms:

‖|v|‖m,k := (

NT∑
n=0

||vn||mk ∆t)1/m, ‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k.

Theorem 6.1 (Convergence of STAFASL). Consider STAFASL scheme. Suppose
(u, p) satisfies the following regularity conditions:

u ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ;Hk+1(Ω)) ∩H3(0, T ;L2(Ω)),

p ∈ L2(0, T ;Hs+1(Ω)) ∩H2(0, T ;L2(Ω)), and f ∈ L2(0, T ;L2(Ω)).

Then, for ∆t sufficiently small, there is a positive constant C independent of the mesh width
and time step such that

1

2

(
‖eN+1‖2 +

3

4
‖eN‖2 + 4∆t2‖Λh(eN )‖2

)
+ ∆t

N∑
n=1

ν

4
||∇(en+1 + en−1)||2

≤ exp(
C(T + ∆t)(1 + ν−3‖|∇u|‖4∞,0)

1− C∆t(1 + ν−3‖|∇u|‖4∞,0)
)

[
1

2

(
‖e1‖2 + 8∆t2‖Λh(e1)‖2
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+
5

4
‖e0‖2 + 4∆t2‖Λh(e0)‖2

)
+ Ch2k(ν + ν−3 + ν−1‖∇U‖2)‖|u|‖22,k+1 (6.1)

+C(∆t)4ν−1‖ptt‖22,0 + Ch2s+2ν−1‖|p|‖22,s+1 + Ch2k+1‖Λh‖2‖|u|‖22,k+1

+Ch2k+2‖ut‖22,k+1 + C(∆t)4(‖uttt‖22,0 + ν‖∇utt‖22,0 + ν−1‖∇utt‖22,0

+ν−1‖∇U‖2‖∇utt‖22,0 + ‖Λ∗hΛh‖2‖ut‖22,0 + h2k+2‖Λ∗hΛh‖‖ut‖22,k+1)

]
.

STAFASL is a 3 level method. To obtain (u1
h, p

1
h) one must use another method, e.g.,

Crank-Nicholson. Note the errors in this first step will affect the overall convergence rate of
our method.

Consequently, for Taylor-Hood elements, i.e. k = 2, s = 1, we have the following result.
Corollary 6.2. Under the assumptions of Theorem 6.1, with (Xh, Qh) given by the

Taylor-Hood approximation elements (k = 2, s = 1), e0 assumed to be 0, using a second
order method in the first step, we have

1

2
[||eN+1||2 +

3

4
||eN ||2 + 4∆t2||Λh(eN )||2]

+∆t

N∑
n=1

ν

4
||∇(en+1 + en−1)||2 ≤ C((∆t)4 + h4).

Proof. (Theorem 6.1)
The variational formulation of STAFASL is, for all vh ∈ Vh, qh ∈ Qh,

(
un+1
h − un−1

h

2∆t
, vh) + 2∆t

(
Λh(un+1

h − un−1
h ),Λh(vh)

)
+b∗(U, unh, vh) + (fC × unh, vh) (6.2)

+ν(∇
un+1
h + un−1

h

2
,∇vh) + b∗(

un+1
h + un−1

h

2
− U,

un+1
h + un−1

h

2
, vh)

−(
pn+1
h + pn−1

h

2
,∇ · vh) + (qh,∇ ·

un+1
h + un−1

h

2
) = (fn, vh).

At time tn, the true solution (u, p) of the NSE + rotation force satisfies

(
un+1 − un−1

2∆t
, vh) + 2∆t

(
Λh(un+1 − un−1),Λh(vh)

)
+b∗(U, un, vh) + (fC × un, vh) + ν(∇u

n+1 + un−1

2
,∇vh) (6.3)

−(
pn+1 + pn−1

2
,∇ · vh) = (fn, vh) + τ(un; vh)

for all vh ∈ Vh, where τ(un; vh) represents the consistency error

τ(un; vh) =

(
un+1 − un−1

2∆t
− ut(·, tn), vh

)
+ 2∆t

(
Λh(un+1 − un−1),Λh(vh)

)
−b∗(un, un, vh) + b∗(U, un, vh) + ν

(
∇(

un+1 + un−1

2
− un),∇vh

)
−(
pn+1 + pn−1

2
− pn,∇ · vh).

Let

en = un − unh = (un − Ihun) + (Ihu
n − unh) = ηn + ξn,
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where Ihu
n ∈ Vh is an interpolation of un in Vh. Subtracting (6.2) from (6.3) gives

(
ξn+1 − ξn−1

2∆t
, vh) + 2∆t

(
Λh(ξn+1 − ξn−1),Λh(vh)

)
+ (Λh(ξn), vh)

+ν(∇ξ
n+1 + ξn−1

2
,∇vh) + b∗(un, un, vh)− b∗(

un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, vh)

−b∗(U, un −
un+1
h + un−1

h

2
, vh)− 2∆t

(
Λh(un+1 − un−1),Λh(vh)

)
(6.4)

=

(
un+1 − un−1

2∆t
− ut(·, tn), vh

)
− (

ηn+1 − ηn−1

2∆t
, vh)− 2∆t

(
Λh(ηn+1 − ηn−1),Λh(vh)

)
− (Λh(ηn), vh)− ν(∇η

n+1 + ηn−1

2
,∇vh) + (

pn+1 + pn−1

2
− qh,∇ · vh)

+ν

(
∇(

un+1 + un−1

2
− un),∇vh

)
− (

pn+1 + pn−1

2
− pn,∇ · vh).

for all qh ∈ Qh. By the skew symmetry of Λh, we have(
Λh(ξn), ξn+1 + ξn−1

)
= Cn+ 1

2 − Cn− 1
2 ,

where

Cn+ 1
2 =

(
Λh(ξn), ξn+1

)
,

Cn−
1
2 = −

(
Λh(ξn), ξn−1

)
=
(
Λh(ξn−1), ξn

)
.

Set vh = ξn+1 + ξn−1 ∈ Vh and sum up (6.4) from n = 1 to n = N

1

2∆t
(‖ξN+1‖2 + ‖ξN‖2 − ‖ξ1‖2 − ‖ξ0‖2) + 2∆t

(
‖Λh(ξN+1)‖2 + ‖Λh(ξN )‖2

−‖Λh(ξ1)‖2 − ‖Λh(ξ0)‖2
)

+ CN+ 1
2 − C1− 1

2 +

N∑
n=1

ν

2
‖∇(ξn+1 + ξn−1)‖2

=

N∑
n=1

{
ν

(
∇(

un+1 + un−1

2
− un),∇(ξn+1 + ξn−1)

)
(6.5)

−b∗(un, un, ξn+1 + ξn−1) + b∗(
un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

+b∗(U, un −
un+1
h + un−1

h

2
, ξn+1 + ξn−1)− (

ηn+1 − ηn−1

2∆t
, ξn+1 + ξn−1)

+2∆t
(

Λh(un+1 − un−1),Λh(ξn+1 + ξn−1)
)

−2∆t
(
Λh(ηn+1 − ηn−1),Λh(ξn+1 + ξn−1)

)
−
(
Λh(ηn), ξn+1 + ξn−1

)
−ν
(
∇η

n+1 + ηn−1

2
,∇(ξn+1 + ξn−1)

)
+

(
pn+1 + pn−1

2
− qh,∇ · (ξn+1 + ξn−1)

)
−
(
pn+1 + pn−1

2
− pn,∇ · (ξn+1 + ξn−1)

)}
.

Define the ξ energy terms by

E
n+ 1

2

ξ :=
1

2

(
‖ξn+1‖2 + ‖ξn‖2 + 4∆t2‖Λh(ξn+1)‖2 + 4∆t2‖Λh(ξn)‖2

)
.

Then (6.5) can be rewritten as

E
N+ 1

2

ξ + ∆tCN+ 1
2 + ∆t

N∑
n=1

ν

2
‖∇(ξn+1 + ξn−1)‖2

15



= E
0+ 1

2

ξ + ∆tC1− 1
2 + ∆t

N∑
n=1

{
ν

(
∇(

un+1 + un−1

2
− un),∇(ξn+1 + ξn−1)

)
−b∗(un, un, ξn+1 + ξn−1) + b∗(

un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

+b∗(U, un −
un+1
h + un−1

h

2
, ξn+1 + ξn−1)− (

ηn+1 − ηn−1

2∆t
, ξn+1 + ξn−1) (6.6)

+2∆t
(

Λh(un+1 − un−1),Λh(ξn+1 + ξn−1)
)

−2∆t
(

Λh(ηn+1 − ηn−1),Λh(ξn+1 + ξn−1)
)
−
(

Λh(ηn), ξn+1 + ξn−1
)

−ν
(
∇η

n+1 + ηn−1

2
,∇(ξn+1 + ξn−1)

)
+

(
pn+1 + pn−1

2
− qh,∇ · (ξn+1 + ξn−1)

)
−
(
pn+1 + pn−1

2
− pn,∇ · (ξn+1 + ξn−1)

)}
.

Now we bound the right hand side of the equation above. First,

ν

(
∇(

un+1 + un−1

2
− un),∇(ξn+1 + ξn−1)

)
≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + 16ν‖∇(

un+1 + un−1

2
− un)‖2 (6.7)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + 2ν∆t3

∫ tn+1

tn−1

‖∇utt‖2dt .

For the nonlinear term, adding and subtracting b∗(u
n+1+un−1

2 , u
n+1+un−1

2 , ξn+1 + ξn−1), we
have

−b∗(un, un, ξn+1 + ξn−1) + b∗(
un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

+b∗(U, un −
un+1
h + un−1

h

2
, ξn+1 + ξn−1) (6.8)

= −b∗(un, un, ξn+1 + ξn−1) + b∗(
un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

+b∗(U, un −
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

+b∗(
un+1 + un−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

−b∗(u
n+1 + un−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1).

The RHS of (6.8) can be bounded as follows. First,

b∗(
un+1 + un−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

−b∗(
un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

= b∗(
un+1 + un−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1) (6.9)

−b∗(
un+1
h + un−1

h

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

+b∗(
un+1
h + un−1

h

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)
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−b∗(
un+1
h + un−1

h

2
,
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

= b∗(
ηn+1 + ηn−1

2
+
ξn+1 + ξn−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

+b∗(
un+1
h + un−1

h

2
,
ηn+1 + ηn−1

2
+
ξn+1 + ξn−1

2
, ξn+1 + ξn−1)

= b∗(
ηn+1 + ηn−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

+b∗(
ξn+1 + ξn−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)

+b∗(
un+1
h + un−1

h

2
,
ηn+1 + ηn−1

2
, ξn+1 + ξn−1) .

Estimation of the right hand side of (6.9): First,

b∗(
ηn+1 + ηn−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1) (6.10)

≤ C
√
‖η

n+1 + ηn−1

2
‖‖∇η

n+1 + ηn−1

2
‖‖∇u

n+1 + un−1

2
‖‖∇(ξn+1 + ξn−1)‖

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2

+Cν−1‖η
n+1 + ηn−1

2
‖‖∇η

n+1 + ηn−1

2
‖‖∇u

n+1 + un−1

2
‖2 .

Next, applying Young’s inequality

b∗(
ξn+1 + ξn−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1) (6.11)

≤ C‖ξn+1 + ξn−1‖ 1
2 ‖∇(ξn+1 + ξn−1)‖ 3

2 ‖∇u
n+1 + un−1

2
‖

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−3‖∇u

n+1 + un−1

2
‖4‖ξn+1 + ξn−1‖2

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−3‖∇u

n+1 + un−1

2
‖4(‖ξn+1‖2 + ‖ξn−1‖2) .

The last term in (6.9) can be bounded as follows

b∗(
un+1
h + un−1

h

2
,
ηn+1 + ηn−1

2
, ξn+1 + ξn−1) (6.12)

≤ C‖∇
un+1
h + un−1

h

2
‖‖∇η

n+1 + ηn−1

2
‖‖∇(ξn+1 + ξn−1)‖

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1‖∇

un+1
h + un−1

h

2
‖2‖∇η

n+1 + ηn−1

2
‖2 .

We next bound other terms in (6.8):

b∗(
un+1 + un−1

2
,
un+1 + un−1

2
, ξn+1 + ξn−1)− b∗(un, un, ξn+1 + ξn−1)

= b∗(
un+1 + un−1

2
− un, u

n+1 + un−1

2
, ξn+1 + ξn−1) (6.13)

+b∗(un,
un+1 + un−1

2
− un, ξn+1 + ξn−1)

≤ C‖∇(
un+1 + un−1

2
− un)‖‖∇(ξn+1 + ξn−1)‖(‖∇u

n+1 + un−1

2
‖+ ‖∇un‖)

17



≤ ν

64
‖∇(ξn+1 + ξn−1)‖2

+Cν−1‖∇(
un+1 + un−1

2
− un)‖2(‖∇u

n+1 + un−1

2
‖2 + ‖∇un‖2)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2

+Cν−1∆t3(‖∇u
n+1 + un−1

2
‖2 + ‖∇un‖2)

∫ tn+1

tn−1

‖∇utt‖2dt.

Finally,

b∗(U, un −
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

= b∗(U, un − un+1 + un−1

2
, ξn+1 + ξn−1)

−b∗(U, u
n+1 + un−1

2
−
un+1
h + un−1

h

2
, ξn+1 + ξn−1)

= b∗(U, un − un+1 + un−1

2
, ξn+1 + ξn−1)− b∗(U, η

n+1 + ηn−1

2
, ξn+1 + ξn−1),

where

b∗(U, un − un+1 + un−1

2
, ξn+1 + ξn−1)

≤ C‖∇U‖‖∇(un − un+1 + un−1

2
)‖‖∇(ξn+1 + ξn−1)‖ (6.14)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1‖∇U‖2‖∇(un − un+1 + un−1

2
)‖2

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1∆t3‖∇U‖2

∫ tn+1

tn−1

‖∇utt‖2dt ,

and

b∗(U,
ηn+1 + ηn−1

2
, ξn+1 + ξn−1)

≤ C‖∇U‖‖∇η
n+1 + ηn−1

2
‖‖∇(ξn+1 + ξn−1)‖ (6.15)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1‖∇U‖2‖∇η

n+1 + ηn−1

2
‖2 .

(6.10)-(6.15) give a bound for the RHS of (6.9). Next, we estimate the pressure terms

(
pn+1 + pn−1

2
− qh,∇ · (ξn+1 + ξn−1)

)
≤ ‖p

n+1 + pn−1

2
− qh‖‖∇(ξn+1 + ξn−1)‖ (6.16)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1‖p

n+1 + pn−1

2
− qh‖2

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1(‖p

n+1 + pn−1

2
− pn‖2 + ‖pn − qh‖2)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1(∆t3

∫ tn+1

tn−1

‖ptt‖2dt+ h2s+2‖pn‖2s+1) ,

and (
pn+1 + pn−1

2
− pn,∇ · (ξn+1 + ξn−1)

)
18



≤ ‖p
n+1 + pn−1

2
− pn‖‖∇(ξn+1 + ξn−1)‖ (6.17)

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1‖p

n+1 + pn−1

2
− pn‖2

≤ ν

64
‖∇(ξn+1 + ξn−1)‖2 + Cν−1∆t3

∫ tn+1

tn

‖ptt‖2dt .

For the stabilization term,

∆t
(
Λh(un+1 − un−1),Λh(ξn+1 + ξn−1)

)
= ∆t

(
Λ∗hΛh(un+1 − un−1), ξn+1 + ξn−1

)
≤ C∆t‖Λ∗hΛh(un+1 − un−1)‖‖∇(ξn+1 + ξn−1)‖

≤ C∆t2ν−1‖Λ∗hΛh(un+1 − un−1)‖2 +
ν

64
‖∇(ξn+1 + ξn−1)‖2 (6.18)

≤ C∆t2ν−1

∫
Ω

(∫ tn+1

tn−1

Λ∗hΛh(ut)dt

)2

dΩ +
ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ C∆t2ν−1

∫
Ω

(
2∆t

∫ tn+1

tn−1

|Λ∗hΛh(ut)|2dt

)
dΩ +

ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ C∆t3ν−1

∫ tn+1

tn−1

‖Λ∗hΛh(ut)‖2dt+
ν

64
‖∇(ξn+1 + ξn−1)‖2 .

Also,

∆t
(
Λh(ηn+1 − ηn−1),Λh(ξn+1 + ξn−1)

)
= ∆t

(
Λ∗hΛh(ηn+1 − ηn−1), ξn+1 + ξn−1

)
≤ C∆t‖Λ∗hΛh(ηn+1 − ηn−1)‖‖∇(ξn+1 + ξn−1)‖

≤ C∆t2ν−1‖Λ∗hΛh(ηn+1 − ηn−1)‖2 +
ν

64
‖∇(ξn+1 + ξn−1)‖2 (6.19)

= C∆t2ν−1

∫
Ω

(∫ tn+1

tn−1

Λ∗hΛh(ηt)dt

)2

dΩ +
ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ C∆t2ν−1

∫
Ω

(∫ tn+1

tn−1

|Λ∗hΛh(ηt)|2dt

)
dΩ +

ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ C∆t3ν−1

∫ tn+1

tn−1

‖Λ∗hΛh(ηt)‖2dt+
ν

64
‖∇(ξn+1 + ξn−1)‖2 .

The rest of terms can be estimated as follow

(
ηn+1 − ηn−1

2∆t
, ξn+1 + ξn−1)

≤ C‖η
n+1 − ηn−1

2∆t
‖‖∇(ξn+1 + ξn−1)‖ (6.20)

≤ Cν−1‖η
n+1 − ηn−1

∆t
‖2 +

ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ Cν−1

∫
Ω

(
1

∆t

∫ tn+1

tn−1

(ηt)dt

)2

dΩ + +
ν

64
‖∇(ξn+1 + ξn−1)‖2

≤ C∆t−1ν−1

∫ tn+1

tn−1

‖ηt‖2dt+
ν

64
‖∇(ξn+1 + ξn−1)‖2 ,

19



and (
Λh(ηn), ξn+1 + ξn−1

)
≤ C‖Λh(ηn)‖‖∇(ξn+1 + ξn−1)‖ (6.21)

≤ Cν−1‖Λh(ηn)‖2 +
ν

64
‖∇(ξn+1 + ξn−1)‖2 .

Also,

ν

(
∇(

ηn+1 + ηn−1

2
),∇(ξn+1 + ξn−1)

)
≤ ν‖∇(

ηn+1 + ηn−1

2
)‖‖∇(ξn+1 + ξn−1)‖ (6.22)

≤ 2ν‖∇(ηn+1 + ηn−1)‖2 +
ν

32
‖∇(ξn+1 + ξn−1)‖2 .

Finally, (
un+1 − un−1

2∆t
− ut(tn), ξn+1 + ξn−1

)
≤ Cν−1‖u

n+1 − un−1

2∆t
− ut(tn)‖2 +

ν

64
‖∇(ξn+1 + ξn−1)‖2 (6.23)

≤ C∆t3ν−1

∫ tn+1

tn−1

‖uttt‖2dt+
ν

64
‖∇(ξn+1 + ξn−1)‖2 .

Having bounded each term on the right hand side from (6.8)-(6.23),we now have the following
inequality:

E
N+ 1

2

ξ + ∆tCN+ 1
2 + ∆t

N∑
n=1

ν

4
||∇(ξn+1 + ξn−1)||2

≤ E0+ 1
2

ξ + ∆tC1− 1
2 + ∆t

N∑
n=1

{
Cν−3‖∇u

n+1 + un−1

2
‖4(‖ξn+1‖2 + ‖ξn−1‖2)

+C
(
ν + ν−1(1 + ‖∇U‖2)

)
‖∇(ηn+1 + ηn−1)‖2

+Cν−1‖∇
un+1
h + un−1

h

2
‖2‖∇η

n+1 + ηn−1

2
‖2 (6.24)

+Cν−1‖η
n+1 + ηn−1

2
‖‖∇η

n+1 + ηn−1

2
‖‖∇u

n+1 + un−1

2
‖2

+Cν−1(∆t3
∫ tn+1

tn−1

‖ptt‖2dt+ h2s+2‖pn‖2s+1) + C‖Λh(ηn)‖2

+
C

∆t

∫ tn+1

tn−1

‖ηt‖2dt+ C∆t3
∫ tn+1

tn−1

(
‖uttt‖2 + ν‖∇utt‖2 + ν−1‖∇utt‖2

+ν−1‖∇U‖2‖∇utt‖2 + ‖Λ∗hΛh(ut)‖2 + ‖Λ∗hΛh(ηt)‖2
)
dt

}
.

As in the proof of stability, we have

E
N+ 1

2

ξ + ∆tCN+ 1
2

≥ 1

2
[‖ξN+1‖2 + 4∆t2‖Λh(ξN+1)‖2 + ‖ξN‖2 + 4∆t2‖Λh(ξN )‖2]

−(2∆t2‖Λh(ξN+1)‖2 +
1

8
‖ξN‖2) (6.25)
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≥ 1

2
[‖ξN+1‖2 +

3

4
‖ξN‖2 + 4∆t2‖Λh(ξN )‖2] ,

and

E
0+ 1

2

ξ + ∆tC0+ 1
2

≤ 1

2
[‖ξ1‖2 + 4∆t2‖Λh(ξ1)‖2 + ‖ξ0‖2 + 4∆t2‖Λh(ξ0)‖2]

+(2∆t2‖Λh(ξ1)‖2 +
1

8
‖ξ0‖2) (6.26)

≤ 1

2
[‖ξ1‖2 + 8∆t2‖Λh(ξ1)‖2 +

5

4
‖ξ0‖2 + 4∆t2‖Λh(ξ0)‖2].

Applying interpolation inequalities to (6.24) gives

1

2

(
‖ξN+1‖2 +

3

4
‖ξN‖2 + 4∆t2‖Λh(ξN )‖2

)
+ ∆t

N∑
n=1

ν

4
||∇(ξn+1 + ξn−1)||2

≤ 1

2

(
‖ξ1‖2 + 8∆t2‖Λh(ξ1)‖2 +

5

4
‖ξ0‖2 + 4∆t2‖Λh(ξ0)‖2

)
(6.27)

+∆t

N+1∑
n=0

C(1 + ν−3‖|∇u|‖4∞,0)‖ξn‖2 + Ch2k(ν + ν−3 + ν−1‖∇U‖2)‖|u|‖22,k+1

+C(∆t)4ν−1‖ptt‖22,0 + Ch2s+2ν−1‖|p|‖22,s+1 + Ch2k+1‖Λh‖2‖|u|‖22,k+1

+Ch2k+2‖ut‖22,k+1 + C(∆t)4(‖uttt‖22,0 + ν‖∇utt‖22,0 + ν−1‖∇utt‖22,0
+ν−1‖∇U‖2‖∇utt‖22,0 + ‖Λ∗hΛh‖2‖ut‖22,0 + h2k+2‖Λ∗hΛh‖‖ut‖22,k+1) .

We use the discrete Gronwall inequality, Lemma 6.3 below, without proving, for reference
see [27].

Lemma 6.3. Let D ≥ 0 and κn, An, Bn, Cn ≥ 0 for any integer n ≥ 0 and satisfy

AN + ∆t

N∑
n=0

Bn ≤ ∆t

N∑
n=0

κnAn + ∆t

N∑
n=0

Cn +D for N ≥ 0.

Suppose that for all n, ∆tκn ≤ 1, and set gn = (1−∆tκn)−1. Then,

AN + ∆t

N∑
n=0

Bn ≤ exp(∆t
N∑
n=0

gnκn)[∆t

N∑
n=0

Cn +D] for N ≥ 0.

Let ∆t be sufficiently small, i.e., C∆t < (1+ν−3‖|∇u|‖4∞,0)−1. We can apply the lemma
and obtain

1

2

(
‖ξN+1‖2 +

3

4
‖ξN‖2 + 4∆t2‖Λh(ξN )‖2

)
+ ∆t

N∑
n=1

ν

4
||∇(ξn+1 + ξn−1)||2

≤ exp(
C(T + ∆t)(1 + ν−3‖|∇u|‖4∞,0)

1− C∆t(1 + ν−3‖|∇u|‖4∞,0)
)

[
1

2

(
‖ξ1‖2 + 8∆t2‖Λh(ξ1)‖2

+
5

4
‖ξ0‖2 + 4∆t2‖Λh(ξ0)‖2

)
+ Ch2k(ν + ν−3 + ν−1‖∇U‖2)‖|u|‖22,k+1 (6.28)

+C(∆t)4ν−1‖ptt‖22,0 + Ch2s+2ν−1‖|p|‖22,s+1 + Ch2k+1‖Λh‖2‖|u|‖22,k+1

+Ch2k+2‖ut‖22,k+1 + C(∆t)4(‖uttt‖22,0 + ν‖∇utt‖22,0 + ν−1‖∇utt‖22,0
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+ν−1‖∇U‖2‖∇utt‖22,0 + ‖Λ∗hΛh‖2‖ut‖22,0 + h2k+2‖Λ∗hΛh‖‖ut‖22,k+1)

]
.

Recall that en = ηn + ξn. Use the triangle inequality on the error equation to split the
error terms into terms of η and ξ:

1

2

(
||eN+1||2 +

3

4
||eN ||2 + 4∆t2||Λh(eN )||2

)
+ ∆t

N∑
n=1

ν

4
||∇(en+1 + en−1)||2

≤ 1

2

(
||ξN+1||2 +

3

4
||ξN ||2 + 4∆t2||Λh(ξN )||2

)
+ ∆t

N∑
n=1

ν

4
||∇(ξn+1 + ξn−1)||2 (6.29)

+
1

2

(
||ηN+1||2 +

3

4
||ηN ||2 + 4∆t2||Λh(ηN )||2

)
+ ∆t

N∑
n=1

ν

4
||∇(ηn+1 + ηn−1)||2

Applying inequality (6.28), using the previous bounds for η terms, and absorbing constants
into a new constant C, we have Theorem 6.1.

7. Numerical tests. We present three numerical experiments to test the algorithms
proposed herein. First, given exact solutions, we verify the convergence rates of our methods.
Second, we will test the stability and confirm that STAFASL successfully eliminates time
step condition for stability which affects FASL. Finally, our methods is tested with the
benchmark problem of flow around a cylinder. This experiment shows that STAFASL
successfully produces the vortex street, thus not over-stabilizing the solutions, while flows
generated by FASL are not stable and blow up shortly. The code was implemented using
the software package FreeFEM++.

7.1. Test 1: Green-Taylor vortex. The first test is designed to verify the conver-
gence rates of our methods. We select the velocity field given by the Green-Taylor vortex,
[22], [23]. The exact velocity field is given by

u1(x, y, t) = − cos(ωπx) sin(ωπy)e−2ω2π2t/τ ,

u2(x, y, t) = sin(ωπx) cos(ωπy)e−2ω2π2t/τ , (7.1)

u3(x, y, t) = 0 ,

p(x, y, t) = −1

4
(cos(2ωπx) + cos(2ωπy))e−4ω2π2t/τ .

defined on the domain Ω = (0, 1)2. We take

ω = 2, T = 1, τ = Re = 500, h = 1/m, ∆t = h,

where m is the number of subdivisions of the interval (0, 1). We choose the Coriolis term
fC = (0, 0, 1) and utilize Taylor-Hood finite elements for the discretization. Newton it-
erations are applied to solve the nonlinear system with a ‖w(j+1) − w(j)‖H1(Ω) < 10−10

as a stopping criterion. Convergence rates are calculated from the error at two succes-
sive values of h in the usual manner by postulating e(h) = Chβ and solving for β via
β = ln(e(h1)/e(h2))/ ln(h1/h2). The boundary conditions could be taken to be periodic
(the easier case). Instead we take the boundary condition on the problem to be inhomoge-
neous Dirichlet: uh = uexact, on ∂Ω. The exact velocity field is not very sensitive in time,
so we choose the mean velocity field to be:

U1(x, y, t) = − cos(ωπx) sin(ωπy) ,

U2(x, y, t) = sin(ωπx) cos(ωπy) , (7.2)

U3(x, y, t) = 0 .

The errors and rates of convergence are presented in Table 9.1 and 9.2. From the tables,
we see that the rates of convergence of both algorithms confirm the predicted convergence
rates from theory, and the errors of STAFASL are comparable with those of FASL.
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7.2. Test 2: Stability test. In this experiment, we test and compare the stability
conditions of our methods for fluid flows with Coriolis force. We confirm the time step
restriction for stability of FASL as well as the unconditional stability of STAFASL.

Let Ω = (0, 1)2 and ν = 1/Re = 100. We take the source term f and the boundary
condition to be 0 and the initial condition is given by

u1(x, y, 0) = 2x2(1− x)2y(1− y)(1− 2y) exp(7x),

u2(x, y, 0) = x(1− x)(7x2 − 3x− 2)y2(1− y)2 exp(7x),

u3(x, y, 0) = 0.

We compute kinetic energy En = 1
2‖uh‖

2 using two methods proposed herein: FASL and
STAFASL. For a system lacking of external energy exchange and body forces, the true
kinetic energy decays over time, thus, the variation of its numerical approximation could
give us a clear conclusion on the schemes’ stability: big growth means the scheme is unstable,
decay means the scheme is stable and the unstable mode is damped. Since the velocity also
quickly converges to 0, it is reasonable to choose mean velocity U = 0. Under this setting,
the CFL condition (3.2) of FASL becomes ∆t < ‖fC‖−1

∞ .
Let h = 1/10 and final time T = 10.0, the variation of energy in time is plotted at

different time step size to show the experimental stability restriction of our methods. We
run the test with different values of fC , i.e., fC = (0, 0, 200), fC = (0, 0, 20), fC = (0, 0, 0.02)
to verify how time step restriction depends on rotation force.

Our result is shown in Figure 9.1. We observe that STAFASL is unconditionally stable
in all cases. In the meantime, FASL is shown to be stable with ∆t . 1

200 and ∆t . 1
20

for fC = (0, 0, 200) and (0, 0, 20) respectively. In case fC = (0, 0, 0.02), FASL is virtually
stable with all time step size. These results are completely match with the CFL condition
(3.2).

7.3. Test 3: Flow around a cylinder. Our final numerical experiment is for two
dimensional Navier-Stokes flow around a cylinder. This is a well known benchmark problem
taken from Shäfer and Turek [24]. The flow patterns are driven by interaction of a fluid
with a wall, which is an important scenario for real, industrial type flows. Such flows are
critical if stabilizations are considered to be useful. It is also interesting since success and
failure are clear (vortex street or not) and thus comparison of higher order statistics is not
necessary to reach a clear conclusion.

We consider domain Ω to be a 2.2× 0.41 rectangular channel with a cylinder of radius
0.05 centered at (0.2, 0.2). The cylinder, top and bottom of the channel are prescribed
no-slip boundary conditions, and the inflow and outflow profiles are

u1(0, y) = u1(2.2, y) =
6

0.412
sin(πt/8)y(0.41− y),

u2(0, y) = u2(2.2, y) = 0.

We set the external force f = 0, the viscosity ν = 10−3 and the rotation term fC = 0. The
mean velocity is chosen to be the solution to the corresponding stationary problem with the
inflow and outflow profiles

U1(0, y) = U1(2.2, y) =
1.2

0.412
y(0.41− y),

U2(0, y) = U2(2.2, y) = 0.

For this setting, it is expected that, as flow increases, from t = 2 to t = 4, the eddy behind
the cylinder becomes unstable. Between t = 4 and t = 6, the eddies are then shed on
alternate sides of the cylinder and a vortex street develops. The vortices are still visible at
t = 8.

The solutions to FASL and STAFASL are computed with Taylor-Hood elements on a
triangular mesh providing 27803 total DOFs, refined near the cylinder (see Figure 9.2), and
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time step ∆t = 0.01. Newton iterations are applied to solve the nonlinear system with a
‖w(j+1) −w(j)‖H1(Ω) < 10−8 as a stopping criterion. These simulations are under-resolved;
fully resolved computations of the NSE will require upwards of 100,000 DOFs and ∆t less
than 0.001.

First, we observe that for FASL, Newton iteration fails to converge at t = 0.62. Figure
9.3 shows that the approximated energy of FASL has already gone up and is 171% bigger
than true value before Newton iteration diverges. Therefore, the instability of FASL at
∆t = 0.01 must account for this. This instability illustrates the practical difficulty of
assigning a precise numerical value to the CFL limit for the timestep. On the other hand,
the simulation result of STAFASL is satisfactory: this method is stable and the flow pattern
produced by STAFASL is matched with that of resolved solutions in [25] and [26]. This
evolution can be seen in Figure 9.4, where the vorticity contours are plotted at t = 2, 4, 5, 6
and 8. Our test reaffirms that STAFASL produces acceptable simulations while unaffected
by time step restriction like FASL.

8. Conclusions. CNLF is generally believed to be unstable in the unstable mode
(un+1 − un−1) and the timestep restriction imposed by LF can be very restrictive. This
report gives a comprehensive stability analysis that proves, for Oseen+rotation term, the
unstable mode of CNLF is actually stable under the same type timestep restriction im-
posed by LF for the stability of the stable mode (un+1 + un−1). We also propose and
analyze a stabilized CNLF (STAFASL) that eliminates the timestep restrictions of CNLF
for NSE+rotation term, based on a fast-slow splitting method. Further, this stabilization
method also removes the timestep restriction for stability of the unstable mode of the Oseen
problem. Still, proof of controlling the unstable mode of the full NSE+rotation term is an
open question. Numerical tests confirm the second order convergence rate of STAFASL
and the superior of the STAFASL over FASL in stability.
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h ∆t ‖u−uh‖∞ Rate ‖∇u−∇uh‖2 Rate
1/8 1/8 1.517e-1 – 5.813e+0 –
1/16 1/16 1.219e-2 3.637 9.897e-1 2.554
1/32 1/32 9.906e-4 3.621 1.366e-1 2.857
1/64 1/64 7.118e-5 3.799 1.848e-2 2.886
1/128 1/128 4.868e-6 3.870 2.615e-3 2.823

Table 9.1
The convergence performance for FASL.

h ∆t ‖u−uh‖∞ Rate ‖∇u−∇uh‖2 Rate
1/8 1/8 1.468e-1 – 5.814e+0 –
1/16 1/16 1.211e-2 3.600 9.902e-1 2.554
1/32 1/32 9.898e-4 3.613 1.366e-1 2.858
1/64 1/64 7.865e-5 3.654 1.849e-2 2.885
1/128 1/128 1.740e-5 2.176 2.618e-3 2.820

Table 9.2
The convergence performance for STAFASL.
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Fig. 9.1. The decay of kinetic energy computed by CNLF (left) and CNLFstab (right) with several
different time steps chosen. First row: fC = 0.02, second row: fC = 20, last row: fC = 200.

Fig. 9.2. Mesh for the computation.
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Fig. 9.3. The kinetic energy of flow around a cylinder.

Fig. 9.4. STAFASL: The vorticity contour at times 2, 4, 5, 6, 8.
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