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Abstract. We propose propose a BOundary Update using Resolvent (BOUR) partitioned method, second-order accurate in time, uncon-
ditionally stable, for the interaction between a viscous, incompressible fluid and a thin structure. The method is algorithmically similar to the
sequential Backward Euler - Forward Euler implementation of the midpoint quadrature rule. (i) The structure and fluid sub-problems are first
solved using a Backward Euler scheme, (ii) the velocities of fluid and structure are updated on the boundary via a second-order consistent resol-
vent operator, and then (iii) the structure and fluid sub-problems are solved again, using a Forward Euler scheme. The stability analysis based on
energy estimates shows that the scheme is unconditionally stable. Error analysis of the semi-discrete problem yields second-order convergence
in time. The two numerical examples confirm the theoretical convergence analysis results and show an excellent agreement of the proposed
partitioned scheme with the monolithic scheme.
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1. Introduction. Due to their various applications, development of numerical methods for fluid-structure inter-
action (FSI) problems has been a subject of extensive research [1,5–7,15,18–21,23,27,30,33–36,38]. The compu-
tational algorithms for FSI problems can be classified as monolithic and partitioned. In the monolithic approach, the
fluid and structure equations are solved together [18,24,36]. Using this approach, the two problems remain strongly
coupled, but the resulting linear system is large and ill-conditioned [3, 36]. Alternatively, using the partitioned
approach, the fluid problem is solved separately from the structure problem, resulting in a couple of smaller and
better-conditioned linear systems. Partitioned algorithms can be further classified as strongly-coupled [1, 2, 4, 41],
in which case the fluid and structure sub-problems are iteratively solved within one time step until the energy at the
interface is balanced, or loosely-coupled [6,10,19,33,34], when such sub-iterations are not needed. Since the com-
plexity and computational time of strongly coupled partitioned algorithms often may be comparable to a monolithic
approach, loosely-coupled schemes have been a popular choice. However, loosely coupled algorithms often suffer
from numerical instabilities known as the “added mass effect”, which is apparent in the applications where the fluid
and solid densities are similar, such as hemodynamics.

Loosely coupled methods for the interaction between a fluid and a thin structure based on the Lie operator split-
ting approach were proposed in [11,12,19]. The “kinematically coupled β scheme” introduced in [10,11] is obtained
by adding and subtracting the fluid pressure from the previous time step, while the “incremental displacement–
correction scheme” introduced in [19] is obtained by adding and subtracting the elastic operator applied to the
displacement from the previous time step. In both schemes, the fluid sub-problem is solved with a Robin boundary
condition which takes into account the mass the of structure at the fluid-structure interface, exploiting the assumption
that the structure is thin, i.e. has lower dimension than the fluid. The incremental displacement–correction scheme
and the kinematically coupled β scheme for β = 1 have been shown to be first order convergent in time [11, 19].
Both partitioned and monolithic approaches for FSI problems based on the Nitsche’s penalty method were proposed
in [13, 14]. Both thin and thick structures, which result in FSI problems which are more difficult to decouple, are
considered. Due to numerical instabilities, the partitioned scheme is stabilized by adding a term which controls the
pressure variations at the interface. The splitting error, however, lowers the temporal accuracy of the scheme, which
was then corrected by proposing a few defect-correction sub-iterations to achieve an optimal, first order convergence
rate.

Second-order partitioned schemes have been proposed in [5, 6, 33, 34]. In particular, a partitioned approach
based on the Strang splitting was proposed in [33] to study the interaction between non-Newtonian fluids and thin
structures. However, the order of convergence was only investigated in numerical experiments. Partitioned algo-
rithms based on the so called added-mass partitioned Robin conditions have been proposed in [5, 6]. Using the
von Neumann stability analysis, the authors showed that the algorithm for the interaction between a fluid and a
thick, elastic structure proposed in [5] is stable under a condition on the time step which depends on the structure
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parameters. The algorithm proposed in [6], which involves FSI with structural shells, is weakly stable under a
Courant–Friedrichs–Lewy (CFL) condition. Although the numerical results indicate second-order convergence in
time, the convergence rates are not analytically derived. A loosely-coupled scheme for the interaction between a
fluid and a thin structure based on the Crank-Nicolson time discretization, combined with operator-splitting, was
proposed in [34]. In order to achieve stability, the fluid problem is solved with a Robin boundary condition con-
taining structure inertia at the fluid-structure interface, where the fluid stress was added and subtracted to ensure
second-order convergence in time. Based on energy estimates, the scheme has been shown to be stable under a CFL
condition. The optimal convergence rates have been obtained via both the a priori error estimates and the numerical
results.

In this work, we propose a novel partitioned algorithm for the interaction between an incompressible, viscous
fluid and a thin, elastic structure. As commonly done in the literature, we assume that the fluid is modeled using
the Stokes equations, that the structure displacement is infinitesimal and that the fluid-structure interaction problem
is linear [5, 11, 13, 19]. The proposed BOundary Update using the Resolvent partitioned algorithm is similar to the
sequential Backward Euler (BE) - Forward Euler (FE) implementation of the Crank-Nicolson method. (i) The fluid
and structure sub-problems are first solved using a BE scheme, (ii) the velocities of fluid and structure are updated
on the boundary via a second-order in time consistent resolvent operator, and then (iii) the structure and fluid sub-
problems are solved again, using a FE scheme. The main novelty of the BOUR algorithm is the way in which
the interface conditions are combined with the fluid and structure sub-problems, which leads to an unconditionally
stable method. Due to the modus operandi used in coupling of the fluid and solid sub-problems, BOUR differs
significantly from the numerical scheme we previously developed in [34], which was only conditionally stable. The
stability and convergence properties of the semi-discretized scheme are analyzed in Theorem 3.1 and Theorem 4.1,
yielding the unconditional stability and optimal, second-order convergence in time. We investigated the properties of
the proposed method on two numerical examples, and compared the method to the existing ones in the literature. Our
results indicate optimal convergence rate of the BOUR method. Furthermore, we observe an excellent comparison
between the BOUR method and a monolithic scheme, even in case of large time steps, making the proposed method
an appealing alternative to the monolithic scheme.

2. Description of the problem. We are interested in modeling the interaction between a viscous, incompress-
ible fluid and a thin, elastic structure. We assume that the fluid is occupying domain Ω ⊂ Rd , d = 2,3, and that
∂Ω = Γ∪Γin∪Γout , where Γ represents the elastic structure, Γin represents inflow and Γout represents outflow (see
Figure 2.1). We also assume that the flow is laminar, that the structure undergoes infinitesimal displacements and
that the fluid-structure interaction is linear. These are common assumptions in the analysis of partitioned schemes
for FSI problems [5, 11, 13, 19].

FIG. 2.1. Fluid domain Ω. The lateral boundary Γ represents an elastic structure.

With the assumption that the flow is Newtonian, we model the fluid using the time-dependent Stokes equations
in a fixed domain Ω

ρ f ∂tu= ∇ ·σ(u, p) in Ω× (0,T ), (2.1)
∇ ·u= 0 in Ω× (0,T ), (2.2)
σ(u, p)n=−pin(t)n on Γin× (0,T ), (2.3)
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σ(u, p)n=−pout(t)n on Γout × (0,T ), (2.4)

u(.,0) = u0 in Ω, (2.5)

where u = (ui)i=1,...,d is the fluid velocity, p is the fluid pressure, ρ f is the fluid density and σ(u, p) = −pI +
2µD(u) is the fluid stress tensor, where D(u) = (∇u+ (∇u)T )/2 is the strain rate tensor and µ is the fluid
viscosity. The outward normal to the fluid domain boundary is denoted by n, and pin and pout are the prescribed
inflow or outflow forces.

The structure elastodynamics is described by a linearly elastic, lower-dimensional model, given by

ρsh∂ttη+Lsη = f on Γ× (0,T ), (2.6)
η = 0 on ∂Γ× (0,T ), (2.7)

η(.,0) = η0, ∂tη(.,0) = η0
v on Γ, (2.8)

where η = (ηi)i=1,...,d denotes the structure displacement, ρs denotes the structure density, h denotes the structure
thickness and f is a surface force applied by the fluid on the structure. We assume that there are no external forces
acting on the structure. Operator Ls describes the elastic behavior of the structure. Specific choices of Ls are
detailed in Section 5. We define an inner-product associated with the structure operator

as(η,ζ) =
∫

Γ

Lsη ·ζdS

and norm ‖η‖2
S = as(η,η). We assume that operator Ls : D(Ls)⊂ L2(Γ)→ L2(Γ) is a maximal monotone operator

[9], such that a Poincaré type inequality holds

‖η‖L2(Γ) ≤CP,S‖η‖S, (2.9)

and the norm ‖ · ‖S is equivalent to the H1(Γ) norm. One example of such operator is the one associated with the
linearly elastic cylindrical Koiter shell used in [12].

To couple the fluid and the structure, we prescribe the kinematic and dynamic coupling conditions. The kine-
matic coupling condition enforces the continuity of velocities at the fluid-structure interface:

u= ∂tη on Γ× (0,T ). (2.10)

The dynamic coupling condition enforces the conservation of momentum:

f =−σ(u, p)n on Γ× (0,T ). (2.11)

Equations (2.1)-(2.11) define a linear fluid-structure interaction problem, which has a well-defined energy [11, 34].

3. Numerical scheme. We start by rewriting the coupled problem. Introduce the displacement velocity ξ =
∂tη. The coupled problem can be reformulated in the following way: Find u, p,η and ξ such that

ρ f ∂tu= ∇ ·σ(u, p) in Ω× (0,T ), (3.1)
∇ ·u= 0 in Ω× (0,T ), (3.2)
ρsε∂tξ+Lsη =−σ(u, p)n on Γ× (0,T ), (3.3)
u= ξ = ∂tη on Γ× (0,T ), (3.4)

with the boundary and initial conditions specified in the previous section.
Let ∆t be the time step and tn = n∆t for n = 0, . . . ,N, where T = N∆t is the final time. The proposed numerical

scheme is given as follows.
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ALGORITHM 1. (BOUR) Given u0 in Ω, and η0,ξ0 = u|0
Γ

on Γ, we first need to compute u
1
2 , p

1
2 ,u1 in Ω,

and η
1
2 ,η1,ξ

1
2 ,ξ1 on Γ with a second-order method. A monolithic method or a loosely coupled method proposed

in [34] could be used, among others. Then for all n≥ 1 compute:

BE :


ηn+ 1

2 −ηn

∆t/2
= ξn+ 1

2 on Γ,

ρsh
ξn+ 1

2 −ξn

∆t/2
+Lsη

n+1/2 =−σ(un− 1
2 |Γ, pn− 1

2 |Γ)n on Γ,

(3.5)

BE :



ρ f
un+ 1

2 −un

∆t/2
−∇ ·σ(un+ 1

2 , pn+ 1
2 ) = 0 in Ω,

∇ ·un+ 1
2 = 0 in Ω,

ρsh
un+ 1

2 −ξn+ 1
2

∆t/2
+

∆t
2

Ls
(
un+ 1

2 −ξn+ 1
2
)
= 2
(
−σ(un+ 1

2 , pn+ 1
2 )n+σ(un− 1

2 , pn− 1
2 )n
)

on Γ,

(3.6)

FE :


ηn+1−ηn+ 1

2

∆t/2
= un+ 1

2 |Γ on Γ,

ρsh
ξn+1−un+ 1

2 |Γ
∆t/2

+Lsη
n+ 1

2 =−σ(un− 1
2 |Γ, pn− 1

2 |Γ)n on Γ,

(3.7)

FE :

 ρ f
un+1−un+ 1

2

∆t/2
−∇ ·σ(un+ 1

2 , pn+ 1
2 ) = 0 in Ω,

un+1 = ξn+1 on Γ.

(3.8)

REMARK 3.1. The operator ρsh
∆t I + ∆t

4 Ls is bijective from D(Ls) onto H := L2(Γ). Furthermore, ∆t
ρshJ is the

resolvent of Ls and J =
(

ρsh
∆t I+ ∆t

4 Ls
)−1 is a bounded operator, with the following bounds on the operator-norms

‖J ‖L(H) ≤
∆t
ρsh

, ‖LsJ ‖L(H) ≤
∆t
ρsh
‖Ls‖L(H). (3.9)

Note that denoting α = ∆t2

4ρsh , J α =
(

I + ∆t2

4ρshLs

)−1
, and L α

s the Yosida approximation of Ls, we have

LsJ = Ls

(
ρsh
∆t

I +
∆t
4

Ls

)−1
=

∆t
ρsh

Ls

(
I +

∆t2

4ρsh
Ls

)−1
≡ ∆t

ρsh
LsJ

α ≡ ∆t
ρsh

L α
s

which in turns, due to

‖L α
s (z)‖ ≤ ‖Ls(z)‖ ∀z ∈ D(Ls),

gives the second part of (3.9) (see e.g. page 182 in [9]). Furthermore, the following J -norm is well-defined

‖η‖2
J = (η,J η︸︷︷︸

:=v

) =
(
(

ρsh
∆t

I +
∆t
4

Ls)v,v
)
=

ρsh
∆t
‖v‖2

L2(Γ)+
∆t
4
‖v‖2

S =
ρsh
∆t
‖J η‖2

L2(Γ)+
∆t
4
‖J η‖2

S. (3.10)

We also note that the boundary condition in (3.6) can be written as

un+ 1
2 −ξn+ 1

2 = J
(
−σ(un+ 1

2 , pn+ 1
2 )n+σ(un− 1

2 , pn− 1
2 )n
)
. (BOUR)
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REMARK 3.2. Computational savings can be achieved by combining the stages of (3.5)-(3.8), which shows that
the proposed numerical scheme is similar to the sequential BE-FE implementation of the Crank-Nicolson method.

Evaluating the first displacement equation in (3.7) at n− 1 instead of n and adding it to the first displacement
equation in (3.5) we get

ηn+ 1
2 −ηn− 1

2

∆t
=
ξn+ 1

2 +un− 1
2 |Γ

2
on Γ.

Similarly, velocity equations in (3.7) and (3.5) can be combined to obtain

ρsh
ξn+ 1

2 −un− 1
2 |Γ

∆t
+Ls

(ηn+1/2 +ηn−1/2

2

)
=−1

2

(
σ(un− 1

2 |Γ, pn− 1
2 |Γ)n+σ(un− 3

2 |Γ, pn− 3
2 |Γ)n

)
on Γ.

(3.11)

For the fluid, we again write the first relation in (3.8) at n−1 instead of n and add it to the first relation in (3.6) to
obtain

ρ f
un+ 1

2 −un− 1
2

∆t
− 1

2
∇ ·
(
σ(un+ 1

2 , pn+ 1
2 )+σ(un− 1

2 , pn− 1
2 )
)
= 0 in Ω.

The boundary conditions on the fluid part at half-integers are given in relation (BOUR), while at the integer values,
the relation un = ξn gives again (3.11). Therefore, the numerical algorithm at half-integer values can be written as

ηn+ 1
2 −ηn− 1

2

∆t
=
ξn+ 1

2 +un− 1
2 |Γ

2
on Γ, (3.12)

ρsh
ξn+ 1

2 −un− 1
2 |Γ

∆t
+Ls

(ηn+1/2 +ηn−1/2

2

)
=−1

2

(
σ(un− 1

2 |Γ, pn− 1
2 |Γ)n+σ(un− 3

2 |Γ, pn− 3
2 |Γ)n

)
on Γ,

(3.13)

ρ f
un+ 1

2 −un− 1
2

∆t
− 1

2
∇ ·
(
σ(un+ 1

2 , pn+ 1
2 )+σ(un− 1

2 , pn− 1
2 )
)
= 0 in Ω, (3.14)

un+ 1
2 = ξn+ 1

2 −J
(
σ(un+ 1

2 , pn+ 1
2 )n−σ(un− 1

2 , pn− 1
2 )n
)

on Γ. (3.15)

REMARK 3.3. We point out that Algorithm 1 is presented in the sequential implementation BE-FE of the
midpoint rule (3.5)-(3.8) for the theoretical argumentation. From a computational viewpoint, the bulk of the work
in Algorithm 1 is performed in the Backward-Euler steps, as the Forward-Euler steps are equivalent to linear
extrapolations:

BE :


ηn+ 1

2 −ηn

∆t/2
= ξn+ 1

2 on Γ,

ρsh
ξn+ 1

2 −ξn

∆t/2
+Lsη

n+1/2 =−σ(un− 1
2 |Γ, pn− 1

2 |Γ)n on Γ,

BE :



ρ f
un+ 1

2 −un

∆t/2
−∇ ·σ(un+ 1

2 , pn+ 1
2 ) = 0 in Ω,

∇ ·un+ 1
2 = 0 in Ω,

ρsh
un+ 1

2 −ξn+ 1
2

∆t/2
+

∆t
2

Ls
(
un+ 1

2 −ξn+ 1
2
)
= 2
(
−σ(un+ 1

2 , pn+ 1
2 )n+σ(un− 1

2 , pn− 1
2 )n
)

on Γ,
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FE :


ηn+1 = 2ηn+ 1

2 −ηn+ 1
2 +

∆t
2
(un+ 1

2 |Γ−ξn+ 1
2 ) on Γ,

ξn+1 = un+ 1
2 |Γ +ηn+ 1

2 −ηn on Γ,

FE :

{
un+1 = 2un+ 1

2 −un in Ω,

un+1 = ξn+1 on Γ.

3.1. Stability - energy estimates. Denote by E N
s is the sum of the elastic energy of the structure, kinetic energy

of the structure and kinetic energy of the fluid

E N
s =

1
2
‖ηN‖2

S +
ρsh
2
‖ξN‖2

L2(Γ)+
ρ f

2
‖uN‖2

L2(Ω)+
∆t
4

∥∥σ(uN+ 1
2 |Γ, pN+ 1

2 |Γ)n
∥∥2

J
,

and by DN
s is the fluid viscous dissipation rate

DN
s = 2µ∆t

N−1

∑
n=1
‖D(un+1/2)‖2

L2(Ω).

The stability of the scheme (3.5)-(3.8) is given in the following theorem.
THEOREM 3.1. Assume that the system is isolated, i.e. pin = pout = 0, and that as(·, ·) is an inner-product

associated with the structure operator Ls. We also assume that Ls is a maximal monotone operator, such that
inequality (2.9) holds, the norm ‖η‖S = (as(η,η))

1
2 is equivalent to the H1(Γ) norm, and ∆t

ρshJ is the resolvent of
Ls. Let (ξn,ηn,un, pn) be the solution of (3.5)-(3.8). Then, the following a priori energy equality holds

E N
s +DN

s +N N
s = E 1

s +
∆t
4

∥∥σ(u 1
2 |Γ, p

1
2 |Γ)n

∥∥2
J
,

where N N
s denotes terms due to numerical dissipation

N N
s =

ρsh
4

N−1

∑
n=1
‖un+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)+
∆t2

16

N−1

∑
n=1
‖un+ 1

2 −ξn+ 1
2 ‖2

S.

Proof. We multiply (3.5) by Lsη
n+ 1

2 and ξn+ 1
2 respectively, integrate over Γ, add and apply the polarized

identity (a−b)a = 1
2 a2− 1

2 b2 + 1
2 (a−b)2 to obtain:

0 =
1
∆t

(
‖ηn+ 1

2 ‖2
S−‖ηn‖2

S +‖ηn+ 1
2 −ηn‖2

S

)
+

ρsh
∆t

(
‖ξn+ 1

2 ‖2
L2(Γ)−‖ξ

n‖2
L2(Γ)+‖ξ

n+ 1
2 −ξn‖2

L2(Γ)

)
+
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)nξn+ 1
2 .

Similarly, from (3.7), multiplying with Lsη
n+ 1

2 and un+ 1
2 |Γ, we derive

0 =
1
∆t

(
‖ηn+1‖2

S−‖ηn+ 1
2 ‖2

S−‖ηn+1−ηn+ 1
2 ‖2

S

)
+

ρsh
∆t

(
‖ξn+1‖2

L2(Γ)−‖u
n+ 1

2 ‖2
L2(Γ)−‖ξ

n+1−un+ 1
2 ‖2

L2(Γ)

)
+
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)nun+ 1
2 |Γ.

Hence, from the structure part, we have

0 =
1
∆t

(
‖ηn+1‖2

S−‖ηn‖2
S−‖ηn+1−ηn+ 1

2 ‖2
S +‖ηn+ 1

2 −ηn‖2
S

)
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+
ρsh
∆t

(
‖ξn+1‖2

L2(Γ)−‖ξ
n‖2

L2(Γ)+‖ξ
n+ 1

2 ‖2
L2(Γ)−‖u

n+ 1
2 ‖2

L2(Γ)−‖ξ
n+1−un+ 1

2 ‖2
L2(Γ)+‖ξ

n+ 1
2 −ξn‖2

L2(Γ)

)
+
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)n
(
ξn+ 1

2 +un+ 1
2
)
.

Using again the displacement equations in (3.7) and (3.5) we have

−‖ηn+1−ηn+ 1
2 ‖2

S +‖ηn+ 1
2 −ηn‖2

S =
∆t2

4
(
−‖un+ 1

2 ‖2
S +‖ξn+ 1

2 ‖2
S
)
,

while the velocity equations yield

−‖ξn+1−un+ 1
2 ‖2

L2(Γ)+‖ξ
n+ 1

2 −ξn‖2
L2(Γ) = 0.

Hence the above energy estimate on the structure part gives

0 =
1
∆t

(
‖ηn+1‖2

S−‖ηn‖2
S

)
(3.16)

+
ρsh
∆t

(
‖ξn+1‖2

L2(Γ)−‖ξ
n‖2

L2(Γ)

)
+

ρsh
∆t

(
‖ξn+ 1

2 ‖2
L2(Γ)−‖u

n+ 1
2 ‖2

L2(Γ)

)
+

∆t
4

(
−‖un+ 1

2 ‖2
S +‖ξn+ 1

2 ‖2
S

)
+
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)n
(
ξn+ 1

2 +un+ 1
2
)
.

For the fluid part, we multiply the first two equations in (3.6) by un+ 1
2 and 2pn+ 1

2 respectively, and (3.8) by un+ 1
2 ,

integrate over Ω, add and obtain

0 =
ρ f

∆t

(
‖un+1‖2

L2(Ω)−‖u
n‖2

L2(Ω)−‖u
n+1−un+ 1

2 ‖2
L2(Ω)+‖u

n+ 1
2 −un‖2

L2(Ω)

)
−2

∫
Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)nun+ 1
2 +2

∫
Ω

σ(un+ 1
2 , pn+ 1

2 ) : ∇un+ 1
2 +2

∫
Ω

pn+ 1
2 ∇ ·un+ 1

2

+
ρsh
∆t

(
‖un+ 1

2 ‖2
L2(Γ)−‖ξ

n+ 1
2 ‖2

L2(Γ)+‖u
n+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)

)
+

∆t
4
‖un+ 1

2 ‖2
S−

∆t
4
‖ξn+ 1

2 ‖2
S +

∆t
4
‖un+ 1

2 −ξn+ 1
2 ‖2

S.

Taking into account the flow equations we have

−‖un+1−un+ 1
2 ‖2

L2(Ω)+‖u
n+ 1

2 −un‖2
L2(Ω) = 0.

Hence the fluid part of the energy estimates gives

0 =
ρ f

∆t

(
‖un+1‖2

L2(Ω)−‖u
n‖2

L2(Ω)

)
+4µ‖D(un+ 1

2 )‖2
L2(Ω)

+
ρsh
∆t

(
‖un+ 1

2 ‖2
L2(Γ)−‖ξ

n+ 1
2 ‖2

L2(Γ)+‖u
n+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)

)
+

∆t
4
‖un+ 1

2 ‖2
S−

∆t
4
‖ξn+ 1

2 ‖2
S +

∆t
4
‖un+ 1

2 −ξn+ 1
2 ‖2

S−2
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)nun+ 1
2 |Γ.

Therefore the structure and fluid estimates combine to give

0 =
1
∆t

(
‖ηn+1‖2

S−‖ηn‖2
S

)
+

ρsh
∆t

(
‖ξn+1‖2

L2(Γ)−‖ξ
n‖2

L2(Γ)

)
+

ρsh
∆t
‖un+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)

+
∆t
4
‖un+ 1

2 −ξn+ 1
2 ‖2

S +
ρ f

∆t

(
‖un+1‖2

L2(Ω)−‖u
n‖2

L2(Ω)

)
+4µ‖D(un+ 1

2 )‖2
L2(Ω)
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+
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)n
(
ξn+ 1

2 |Γ−un+ 1
2 |Γ
)
.

Now using the J -norm (3.10), and the boundary conditions on the fluid part (BOUR) at the half-integer time-steps,
we have ∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)n
(
ξn+ 1

2 |Γ−un+ 1
2 |Γ
)

=
∫

Γ

σ(un− 1
2 |Γ, pn− 1

2 |Γ)nJ
(
σ(un+ 1

2 |Γ, pn+ 1
2 |Γ)n−σ(un− 1

2 |Γ, pn− 1
2 |Γ)n

)
=

1
2

∥∥σ(un+ 1
2 |Γ, pn+ 1

2 |Γ)n
∥∥2

J
−
∥∥σ(un− 1

2 |Γ, pn− 1
2 |Γ)n

∥∥2
J

− 1
2

∥∥∥σ(un+ 1
2 |Γ, pn+ 1

2 |Γ)n−σ(un− 1
2 |Γ, pn− 1

2 |Γ)n
∥∥∥2

J

=
1
2

∥∥σ(un+ 1
2 |Γ, pn+ 1

2 |Γ)n
∥∥2

J
−
∥∥σ(un− 1

2 |Γ, pn− 1
2 |Γ)n

∥∥2
J

− ρsh
2∆t
‖un+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)−
∆t
8
‖un+ 1

2 −ξn+ 1
2 ‖2

S.

Finally,

0 =
1
∆t

(
‖ηn+1‖2

S−‖ηn‖2
S

)
+

ρsh
∆t

(
‖ξn+1‖2

L2(Γ)−‖ξ
n‖2

L2(Γ)

)
+

ρsh
2∆t
‖un+ 1

2 −ξn+ 1
2 ‖2

L2(Γ)

+
∆t
8
‖un+ 1

2 −ξn+ 1
2 ‖2

S +
ρ f

∆t

(
‖un+1‖2

L2(Ω)−‖u
n‖2

L2(Ω)

)
+4µ‖D(un+ 1

2 )‖2
L2(Ω)

+
1
2

(∥∥σ(un+ 1
2 |Γ, pn+ 1

2 |Γ)n
∥∥2

J
−
∥∥σ(un− 1

2 |Γ, pn− 1
2 |Γ)n

∥∥2
J

)
.

Summation from n = 1 to N−1 and multiplication by ∆t
2 yields

E N
s +DN

s +N N
s = E 1

s +
∆t
4

∥∥σ(u 1
2 |Γ, p

1
2 |Γ)n

∥∥2
J
,

which completes the proof.

4. Error analysis. In this section we analyze the error of the proposed numerical method. The process of
the analysis is summarized as follows. Using Taylor expansions, we compute the local truncation error, and after
some manipulations involving the bound (3.9) on the norm of the linear operator J , we conclude that the method
(3.5)-(3.8) is consistent of order 2.

The analysis is based on the notion of modified equations, related to the idea of backward error analysis and ge-
ometric integration (see e.g. [25,26,28,29,37] and the references therein). Instead of regarding the computed values
ηn,ξn,un, pn of (3.5)-(3.8) as approximations to the solutions η(tn),ξ(tn),u(tn), p(tn) of (3.1)-(3.4), we consider
them as the solutions to a ‘nearby’ problem. Namely, we shall construct new partial differential equations (4.13)-
(4.18) such that the method (3.5)-(3.8) has cubic consistency order O(∆t3) to the modified equations, compared to
only quadratic consistency order O(∆t2) to the original equations (3.1)-(3.4). Let d denote the displacement, w the
structure velocity, v the fluid velocity and q the fluid pressure, such that (d(t),w(t),v(t),q(t)) satisfy the modified
equations. Since, for example η(tn)−ηn = (η(tn)−d(tn))+(d(tn)−ηn) = (η(tn)−d(tn))+O(∆t3), the global
errors can hence be characterized by the differences between the solutions η(tn)−d(tn) of the original and modified
equations, respectively. Theorem 4.1 shows that the two manifolds (η(t),ξ(t),u(t), p(t)) and (d(t),w(t),v(t),q(t))
are O(∆t2) apart.

HYPOTHESIS 1. We assume that the solution η,ξ,u, p of (3.1)-(3.4) satisfies the following regularity

η ∈W 3,2(0,T ;H1(Γ)), ξ ∈W 2,2(0,T ;H2(Γ)),
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u ∈W 3,2(0,T ;L2(Ω))∩W 2,2(0,T ;H2(Ω))∩W 1,2(0,T ;H3(Γ))∩W 3,2(0,T ;L2(Γ))∩W 2,2(0,T ;H1(Γ)),

p ∈W 2,2(0,T ;H1(Ω))∩W 1,2(0,T : H2(Γ))∩W 1,∞(0,T ;H1(Γ)).

For the purposes of analysis, we use the half-integer formulation of the proposed method (3.12)-(3.15). In the
first part of the analysis, we manipulate the local truncation error to obtain the modified equations related to our
numerical scheme.

Using Taylor expansions at tn we obtain

η′(tn)+
∆t2

24
η′′′(tn) =

ξ(tn)+u(tn)

2
+

∆t
4
(
ξ′(tn)−u′(tn)

)
+

∆t2

16
(
ξ′′(tn)+u′′(tn)

)
+

∆t3

96
(
ξ′′′(tn)−u′′′(tn)

)
+O(∆t4) on Γ, (4.1)

ρsh
∆t

(
ξ(tn)−u(tn)+

∆t
2
(
ξ′(tn)+u′(tn)

)
+

∆t2

8
(
ξ′′(tn)−u′′(tn)

)
+

∆t3

48
(
ξ′′′(tn)+u′′′(tn)

))
+Ls

(
η(tn)+

∆t2

8
η′′(tn)

)
=−

(
σ(u(tn), p(tn))n−∆tσ(u′(tn), p′(tn))n+

5
8

∆t2σ(u′′(tn), p′′(tn))n− 7
24

∆t3σ(u′′′(tn), p′′′(tn))n
)

+O(∆t4) on Γ, (4.2)

ρ fu
′(tn)+

∆t2

24
ρ fu

′′′(tn)−∇ ·σ(u(tn), p(tn))− ∆t2

8
∇ ·σ(u′′(tn), p′′(tn)) = O(∆t4) in Ω, (4.3)

∇ ·u(tn)+
∆t
2

∇ ·u′(tn)+
∆t2

8
∇ ·u′′(tn) = O(∆t3) in Ω, (4.4)

u(tn)+
∆t
2
u′(tn)+

∆t2

8
u′′(tn)+

∆t3

48
u′′′(tn) = ξ(tn)+

∆t
2
ξ′(tn)+

∆t2

8
ξ′′(tn)+

∆t3

48
ξ′′′(tn)

−∆tJ
(
σ(u′(tn), p′(tn))n

)
+O(∆t4) on Γ. (4.5)

We first differentiate equation (4.4) to obtain

∇ ·u′(tn) =−∆t
2

∇ ·u′′(tn)+O(∆t2) in Ω,

∇ ·u′′(tn) =−∆t
2

∇ ·u′′′(tn)+O(∆t2) in Ω.

Taking into account latter equations, (4.4) becomes

∇ ·u(tn) = O(∆t3) in Ω.

Rearranging, equation (4.5) can be written as

ξ−u=
∆t
2
(u′−ξ′)+ ∆t2

8
(u′′−ξ′′)+ ∆t3

48
(u′′′−ξ′′′)+∆tJ

(
σ(u′(tn), p′(tn))n

)
+O(∆t4). (4.6)

By differentiation, we have

ξ′−u′ = ∆t
2
(u′′−ξ′′)+ ∆t2

8
(u′′′−ξ′′′)+ ∆t3

48
(u(iv)−ξ(iv))+∆tJ

(
σ(u′′(tn), p′′(tn))n

)
+O(∆t4), (4.7)

ξ′′−u′′ = ∆t
2
(u′′′−ξ′′′)+ ∆t2

8
(u(iv)−ξ(iv))+∆tJ

(
σ(u′′′(tn), p′′′(tn))n

)
+O(∆t3). (4.8)

Substituting (4.10) in (4.1) and (4.2), after simplifications and rearrangements, we obtain the following local trun-
cation error

η′(tn) = ξ(tn)+
∆t
2
(
ξ′(tn)−u′(tn)

)
+

∆t2

8
ξ′′(tn)− ∆t2

24
η′′′(tn)+

∆t3

48
(
ξ′′′(tn)−u′′′(tn)

)
9



− ∆t
2

J
(
σ(u′(tn), p′(tn))n

)
+O(∆t4) on Γ,

ρsh
(
u′(tn)+

∆t2

24
u′′′(tn)+J

(
σ(u′(tn), p′(tn))n

)
+Lsη(tn)+

∆t2

8
Lsη

′′(tn)

=−σ(u(tn), p(tn))n+∆tσ(u′(tn), p′(tn))n− 5
8

∆t2σ(u′′(tn), p′′(tn))n+
7

24
∆t3σ(u′′′(tn), p′′′(tn))n

+O(∆t4) on Γ,

ρ fu
′(tn)−∇ ·σ(u(tn), p(tn)) =−∆t2

24
ρ fu

′′′(tn)+
∆t2

8
∇ ·σ(u′′(tn), p′′(tn))+O(∆t4) in Ω,

u(tn) = ξ(tn)+
∆t
2
(
ξ′(tn)−u′(tn)

)
+

∆t2

8
(
ξ′′(tn)−u′′(tn)

)
+

∆t3

48
(
ξ′′′(tn)−u′′′(tn)

)
−∆tJ

(
σ(u′(tn), p′(tn))n

)
+O(∆t4) on Γ.

Using (4.11) in the first and last equations, applying (3.9) and rearranging we get

η′(tn) = ξ(tn)+
∆t2

4
(u′′−ξ′′)+ ∆t2

8
ξ′′(tn)− ∆t2

24
η′′′(tn)− ∆t

2
J
(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ,

ρshu′(tn)+Lsη(tn) =−σ(u(tn), p(tn))n

+∆tσ(u′(tn), p′(tn))n−ρshJ
(
σ(u′(tn), p′(tn))n

−ρsh
∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ,

ρ fu
′(tn)−∇ ·σ(u(tn), p(tn)) =−∆t2

24
ρ fu

′′′(tn)+
∆t2

8
∇ ·σ(u′′(tn), p′′(tn))+O(∆t4) in Ω,

u(tn) = ξ(tn)+
∆t2

8
(
u′′(tn)−ξ′′(tn)

)
−∆tJ

(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ.

Next, we use (4.8) in the first and fourth equations as follows

η′(tn) = ξ(tn)+
∆t2

8
ξ′′(tn)− ∆t2

24
η′′′(tn)− ∆t

2
J
(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ, (4.9)

ρshu′(tn)+Lsη(tn) =−σ(u(tn), p(tn))n

+∆tσ(u′(tn), p′(tn))n−ρshJ
(
σ(u′(tn), p′(tn))n

−ρsh
∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ, (4.10)

ρ fu
′(tn)−∇ ·σ(u(tn), p(tn)) =−∆t2

24
ρ fu

′′′(tn)+
∆t2

8
∇ ·σ(u′′(tn), p′′(tn))+O(∆t4) in Ω, (4.11)

u(tn) = ξ(tn)−∆tJ
(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ. (4.12)

Now we are going to rearrange the following expression from (4.10)

y := ∆tσ(u′(tn), p′(tn))n−ρshJ
(
σ(u′(tn), p′(tn))n

as follows. Denote x := σ(u′(tn), p′(tn))n, then

y = (∆tI−ρshJ )x.

Using the definition of J , this is equivalent to
∆t
ρsh
x− 1

ρsh
y = Jx, so

x= J −1
(

∆t
ρsh
x− 1

ρsh
y
)
=
(

ρsh
∆t

I +
∆t
4

Ls

)(
∆t
ρsh
x− 1

ρsh
y
)
= x− 1

∆t
y+

∆t2

4ρsh
Lsx−

∆t
4ρsh

Lsy,
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or equivalently,

1
∆t
y+

∆t
4ρsh

Lsy =
∆t2

4ρsh
Lsx.

Using further manipulations, we have (
ρsh
∆t

I +
∆t
4

Ls

)
y =

∆t2

4
Lsx,

J −1y =
∆t2

4
Lsx,

y =
∆t2

4
J Lsx,

so

∆tσ(u′(tn), p′(tn))n−ρshJ
(
σ(u′(tn), p′(tn))n=

∆t2

4
J Lsσ(u

′(tn), p′(tn))n.

Using the relation above, equation (4.10) can be written as

ρshu′(tn)+Lsη(tn) =−σ(u(tn), p(tn))n

+
∆t2

4
J Lsσ(u

′(tn), p′(tn))n−ρsh
∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ.

Using the first derivative of (4.12), we can write

ρsh
(
ξ′(tn)−∆tJ

(
σ(u′′(tn), p′′(tn))n

))
+Lsη(tn) =−σ(u(tn), p(tn))n

+
∆t2

4
J Lsσ(u

′(tn), p′(tn))n−ρsh
∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ.

Rearranging and use the bound (3.9), we have

ρshξ′(tn)+Lsη(tn) =−σ(u(tn), p(tn))n

+∆tρshJ
(
σ(u′′(tn), p′′(tn))n

)
−ρsh

∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ.

Finally, the local truncation error is given by

η′(tn) = ξ(tn)+
∆t2

8
ξ′′(tn)− ∆t2

24
η′′′(tn)− ∆t

2
J
(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ,

ρshξ′(tn)+Lsη(tn) =−σ(u(tn), p(tn))n

+∆tρshJ
(
σ(u′′(tn), p′′(tn))n

)
−ρsh

∆t2

24
u′′′(tn)− ∆t2

8
Lsη

′′(tn)− 5
8

∆t2σ(u′′(tn), p′′(tn))n+O(∆t3) on Γ,

ρ fu
′(tn)−∇ ·σ(u(tn), p(tn)) =−∆t2

24
ρ fu

′′′(tn)+
∆t2

8
∇ ·σ(u′′(tn), p′′(tn))+O(∆t4) in Ω,

∇ ·u(tn) = O(∆t3) in Ω,

u(tn) = ξ(tn)−∆tJ
(
σ(u′(tn), p′(tn))n

)
+O(∆t3) on Γ.

Denoting the displacement by d, the structure velocity by w, the fluid velocity by v and the fluid pressure by q,
method (3.5)-(3.8) is therefore consistent of O(∆t3) with the following modified equations (see e.g. [17, 25, 26, 31,
32, 40])

d′(t) =w(t)+
∆t2

8
w′′(t)− ∆t2

24
d′′′(t)− ∆t

2
J
(
σ(v′(t),q′(t))n

)
on Γ, (4.13)
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ρshw′(t)+Lsd(t) =−σ(v(t),q(t))n (4.14)

+∆tρshJ
(
σ(v′′(t),q′′(t))n

)
−ρsh

∆t2

24
v′′′(t)− ∆t2

8
Lsd

′′(t)− 5
8

∆t2σ(v′′(t),q′′(t))n on Γ, (4.15)

ρ fv
′(t)−∇ ·σ(v(t),q(t)) =−∆t2

24
ρ fv

′′′(t)+
∆t2

8
∇ ·σ(v′′(t),q′′(t)) in Ω, (4.16)

∇ ·v(t) = 0 in Ω, (4.17)

v(t) =w(t)−∆tJ
(
σ(v′(t),q′(t))n

)
on Γ, (4.18)

where we assume that the “modified” variables d, w, v and q are smooth enough for the quantities involved to
be well-defined. The differences in the structure displacement, structure velocity, and fluid velocity and pressure
d−η,w−ξ,v−u,q− p satisfy the following partial differential system

(d−η)′ = (w−ξ)+ ∆t2

8
w′′− ∆t2

24
d′′′− ∆t

2
J
(
σ(v′,q′)n

)
on Γ, (4.19)

ρsh(w−ξ)′+Ls(d−η) =−σ(v−u,q− p)n

+∆tρshJ
(
σ(v′′,q′′)n

)
−ρsh

∆t2

24
v′′′− ∆t2

8
Lsd

′′− 5
8

∆t2σ(v′′,q′′)n on Γ, (4.20)

ρ f (v−u)′−∇ ·σ(v−u,q− p) =−∆t2

24
ρ fv

′′′+
∆t2

8
∇ ·σ(v′′,q′′) in Ω, (4.21)

∇ · (v−u) = 0 in Ω, (4.22)

v−u=w−ξ−∆tJ
(
σ(v′,q′)n

)
on Γ. (4.23)

We will now use the standard energy estimates to show that d,w,v,q generate a manifold O(∆t2)-close to the
η,ξ,u, p solution manifold. First, we introduce the following notation. Let Ee denote the sum of the kinetic and
elastic energy and De denote the dissipation, given by

Ee(t) =
1
2
‖d−η‖2

S +
ρsh
4
‖w−ξ‖2

L2(Γ)+
ρ f

2
‖v−u‖2

L2(Ω),

De(t) = 2µ‖D(v−u)‖2
L2(Ω).

The main results of this section is given in the following theorem.
THEOREM 4.1. Assume that the solution η,ξ,u, p of (3.1)-(3.4) satisfies the regularity assumptions in Hypoth-

esis 1, and the system is isolated, i.e., pin = pout = 0. Then, the following estimate holds

Ee(t)+
∫ t

0
De(τ)dτ ≤ ∆t4et

(∫ t

0
O1(τ)dτ +O2(t)

)
,

where

O1(t) =
1
2

(1
8
‖w′′(t)‖S +

1
24
‖d′′′(t)‖S +

3
2

CP,S

ρsh
‖Ls

(
σ(v′(t),q′(t))n

)
‖L2(Γ)

)2

+
1

ρsh

(1
8
‖Lsd

′′(t)‖L2(Γ)+
5
8
‖
(
σ(v′′(t),q′′(t))n‖L2(Γ)+

ρsh
24
‖v′′′(t)‖L2(Γ)

)2

+
1

48ρ f

(
ρ f ‖v′′′(t)‖L2(Ω)+3‖∇ ·σ(v′′(t),q′′(t))‖L2(Ω)

)2
+

1
2ρsh

‖σ(v′(t),q′(t))n‖2
L2(Γ)

+
1

2ρsh

(
‖σ(v′′(t),q′′(t))n‖L2(Γ) +

ρsh
24
‖v′′′(t)‖L2(Γ)+

1
8
‖Lsd

′′(t)‖L2(Γ)+
5
8
‖σ(v′′(t),q′′(t))n‖L2(Γ)

)2
,

O2(t) =
1

ρsh
‖σ(v′(t),q′(t))n‖2

L2(Γ)+
1

ρsh
‖σ(v′(0),q′(0))n‖2

L2(Γ).
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Proof. We multiply (4.19) by Ls(d−η), (4.20) by w− ξ, (4.21) by v−u, and (4.22) by q− p, then add,
integrate by parts on Γ (assuming that w′′ = d′′′ = J

(
σ(v′,q′)n) ·n= 0 on ∂Γ) and use (4.23) as follows

1
2

d
dt
‖d−η‖2

S +
ρsh
2

d
dt
‖w−ξ‖2

L2(Γ)+
ρ f

2
d
dt
‖v−u‖2

L2(Ω)+2µ‖D(v−u)‖2
L2(Ω)

=
∆t2

8

∫
Γ

w′′Ls(d−η)−
∆t2

24

∫
Γ

d′′′Ls(d−η)−
∆t
2

∫
Γ

J
(
σ(v′,q′)n

)
Ls(d−η)

+∆tρsh
∫

Γ

J
(
σ(v′′,q′′)n

)
(w−ξ)−ρsh

∆t2

24

∫
Γ

v′′′(w−ξ)

− ∆t2

8

∫
Γ

Lsd
′′(w−ξ)− 5

8
∆t2

∫
Γ

σ(v′′,q′′)n(w−ξ)

−∆t
∫

Γ

σ(v−u,q− p)nJ
(
σ(v′,q′)n

)
− ∆t2

24
ρ f

∫
Ω

v′′′(v−u)+ ∆t2

8

∫
Ω

∇ ·σ(v′′,q′′)(v−u)

Using (4.20), we have

−
∫

Γ

σ(v−u,q− p)nJ
(
σ(v′,q′)n

)
= ρsh

∫
Γ

(w−ξ)′J
(
σ(v′,q′)n

)
+
∫

Γ

Ls(d−η)J
(
σ(v′,q′)n

)
−ρsh∆t

∫
Γ

J
(
σ(v′′,q′′)nJ

(
σ(v′,q′)n

)
+ρsh

∆t2

24

∫
Γ

v′′′J
(
σ(v′,q′)n

)
+

∆t2

8

∫
Γ

Lsd
′′J

(
σ(v′,q′)n

)
+

5
8

∆t2
∫

Γ

σ(v′′,q′′)nJ
(
σ(v′,q′)n

)
.

Using the relation above, the Cauchy-Schwarz inequality, symmetry of operator Ls, the Poincaré inequality and the
bound (3.9) we have

1
2

d
dt
‖d−η‖2

S +
ρsh
2

d
dt
‖w−ξ‖2

L2(Γ)+
ρ f

2
d
dt
‖v−u‖2

L2(Ω)+2µ‖D(v−u)‖2
L2(Ω)

≤ ∆t2

8
‖w′′‖S‖d−η‖S +

∆t2

24
‖d′′′‖S‖d−η‖S +

∆t
2
‖LsJ

(
σ(v′,q′)n

)
‖L2(Γ)‖d−η‖L2(Γ)

+∆tρsh
∫

Γ

J
(
σ(v′′,q′′)n

)
(w−ξ)+ρsh

∆t2

24
‖v′′′‖L2(Γ)‖w−ξ‖L2(Γ)+

∆t2

8
‖Lsd

′′‖L2(Γ)‖w−ξ‖L2(Γ)

+
5
8

∆t2‖σ(v′′,q′′)n‖L2(Γ)‖w−ξ‖L2(Γ)+ρsh∆t
∫

Γ

(w−ξ)′J
(
σ(v′,q′)n

)
+∆t‖d−η‖L2(Γ)‖LsJ

(
σ(v′,q′)n

)
‖L2(Γ)+ρsh∆t2‖J

(
σ(v′′,q′′)n

)
‖L2(Γ)‖J

(
σ(v′,q′)n

)
‖L2(Γ)

+ρsh
∆t3

24
‖v′′′‖L2(Γ)‖J

(
σ(v′,q′)n

)
‖L2(Γ)+

∆t3

8
‖Lsd

′′‖L2(Γ)‖J
(
σ(v′,q′)n

)
‖L2(Γ)

+
5
8

∆t3‖σ(v′′,q′′)n‖L2(Γ)‖J
(
σ(v′,q′)n

)
‖L2(Γ)+

∆t2

24
ρ f ‖v′′′‖L2(Ω)‖v−u‖L2(Ω)

+
∆t2

8
‖∇ ·σ(v′′,q′′)‖L2(Ω)‖v−u‖L2(Ω).

Applying (2.9) and (3.9) and grouping similar terms together, we obtain

1
2

d
dt
‖d−η‖2

S +
ρsh
2

d
dt
‖w−ξ‖2

L2(Γ)+
ρ f

2
d
dt
‖v−u‖2

L2(Ω)+2µ‖D(v−u)‖2
L2(Ω)

≤ ∆t2
(1

8
‖w′′‖S +

1
24
‖d′′′‖S +

3
2

CP,S

ρsh
‖Ls

(
σ(v′,q′)n

)
‖L2(Γ)

)
‖d−η‖S

13



+∆t2
(1

8
‖Lsd

′′‖L2(Γ)+
5
8
‖σ(v′′,q′′)n‖L2(Γ)+

ρsh
24
‖v′′′‖L2(Γ)

)
‖w−ξ‖L2(Γ)

+
∆t2

24

(
ρ f ‖v′′′‖L2(Ω)+3‖∇ ·σ(v′′,q′′)‖L2(Ω)

)
‖v−u‖L2(Ω)

+
∆t4

ρsh

(
‖σ(v′′,q′′)n‖L2(Γ) +

ρsh
24
‖v′′′‖L2(Γ)+

5
8
‖σ(v′′,q′′)n‖L2(Γ)+

1
8
‖Lsd

′′‖L2(Γ)

)
‖σ(v′,q′)n‖L2(Γ)

+∆tρsh
∫

Γ

J
(
σ(v′′,q′′)n

)
(w−ξ)+∆tρsh

∫
Γ

(w−ξ)′J
(
σ(v′,q′)n

)
.

Using Young’s inequality, we have

d
dt

(1
2
‖d−η‖2

S +
ρsh
2
‖w−ξ‖2

L2(Γ)+
ρ f

2
‖v−u‖2

L2(Ω)

)
+2µ‖D(v−u)‖2

L2(Ω)

≤ 1
2
‖d−η‖2

S +
ρsh
4
‖w−ξ‖2

L2(Γ)+
ρ f

2
‖v−u‖2

L2(Ω)+
∆t4

2ρsh
‖σ(v′,q′)n‖2

L2(Γ)

+
∆t4

2

(1
8
‖w′′‖S +

1
24
‖d′′′‖S +

3
2

CP,S

ρsh
‖Ls

(
σ(v′,q′)n

)
‖L2(Γ)

)2

+
∆t4

ρsh

(1
8
‖Lsd

′′‖L2(Γ)+
5
8
‖σ(v′′,q′′)n‖L2(Γ)+

ρsh
24
‖v′′′‖L2(Γ)

)2

+
∆t4

48ρ f

(
ρ f ‖v′′′‖L2(Ω)+3‖∇ ·σ(v′′,q′′)‖L2(Ω)

)2

+
∆t4

2ρsh

(
‖σ(v′′,q′′)n‖L2(Γ)+

ρsh
24
‖v′′′‖L2(Γ)+

1
8
‖Lsd

′′‖L2(Γ)+
5
8
‖σ(v′′,q′′)n‖L2(Γ)

)2

+∆tρsh
∫

Γ

J
(
σ(v′′,q′′)n

)
(w−ξ)+∆tρsh

∫
Γ

(w−ξ)′J
(
σ(v′,q′)n

)
.

Integrating from 0 to t, integrating the last integral by parts in time and assuming that the time-derivative of J
satisfies J ′(σ(v′(τ),q′(τ))n= J

(
σ(v′′(τ),q′′(τ))n, we have

1
2
‖d(t)−η(t)‖2

S +
ρsh
2
‖w(t)−ξ(t)‖2

L2(Γ)+
ρ f

2
‖v(t)−u(t)‖2

L2(Ω)+2µ

∫ t

0
‖D(v(τ)−u(τ))‖2

L2(Ω)dτ

≤ 1
2
‖d(0)−η(0)‖2

S +
ρsh
2
‖w(0)−ξ(0)‖2

L2(Γ)+
ρ f

2
‖v(0)−u(0)‖2

L2(Ω)

+
∫ t

0

(
1
2
‖d(τ)−η(τ)‖2

S +
ρsh
4
‖w(τ)−ξ(τ)‖2

L2(Γ)+
ρ f

2
‖v(τ)−u(τ)‖2

L2(Ω)

)
dτ

+
∆t4

2

∫ t

0

(1
8
‖w′′(τ)‖S +

1
24
‖d′′′(τ)‖S +

3
2

CP,S

ρsh
‖Ls

(
σ(v′(τ),q′(τ))n

)
‖L2(Γ)

)2
dτ

+
∆t4

ρsh

∫ t

0

(1
8
‖Lsd

′′(τ)‖L2(Γ)+
5
8
‖σ(v′′(τ),q′′(τ))n‖L2(Γ)+

ρsh
24
‖v′′′(τ)‖L2(Γ)

)2
dτ

+
∆t4

48ρ f

∫ t

0

(
ρ f ‖v′′′(τ)‖L2(Ω)+3‖∇ ·σ(v′′(τ),q′′(τ))‖L2(Ω)

)2
dτ +

∆t4

2ρsh

∫ t

0
‖σ(v′(τ),q′(τ))n‖2

L2(Γ)dτ

+
∆t4

2ρsh

∫ t

0

(
‖σ(v′′(τ),q′′(τ))n‖L2(Γ) +

ρsh
24
‖v′′′(τ)‖L2(Γ)+

1
8
‖Lsd

′′(τ)‖L2(Γ)+
5
8
‖σ(v′′(τ),q′′(τ))n‖L2(Γ)

)2
dτ

+∆tρsh
∫

Γ

(w(t)−ξ(t))J
(
σ(v′(t),q′(t))n

)
−∆tρsh

∫
Γ

(w(0)−ξ(0))J
(
σ(v′(0),q′(0))n

)
.

We apply the Cauchy-Schwarz and Young’s inequalities to last couple of terms as follows

∆tρsh
∫

Γ

(w(t)−ξ(t))J
(
σ(v′(t),q′(t))n

)
−∆tρsh

∫
Γ

(w(0)−ξ(0))J
(
σ(v′(0),q′(0))n

)
14



≤ ρsh
4
‖w(t)−ξ(t)‖2

L2(Γ)+∆t2
ρ

sh‖J
(
σ(v′(t),q′(t))n

)
‖2

L2(Γ)+
ρsh
4
‖w(0)−ξ(0)‖2

L2(Γ)

+∆t2
ρ

sh‖J
(
σ(v′(0),q′(0))n

)
‖2

L2(Γ). (4.24)

Applying equation (3.9), we have

∆t2
ρ

sh‖J
(
σ(v′(t),q′(t))n

)
‖2

L2(Γ)+∆t2
ρ

sh‖J
(
σ(v′(0),q′(0))n

)
‖2

L2(Γ)

≤ ∆t4

ρsh
‖σ(v′(t),q′(t))n‖2

L2(Γ)+
∆t4

ρsh
‖σ(v′(0),q′(0))n‖2

L2(Γ). (4.25)

Taking into account (4.24) and (4.25), after collecting like terms, we have

Ee(t)+
∫ t

0
De(τ)dτ ≤ 3Ee(0)+

∫ t

0
Ee(τ)dτ +∆t4

∫ t

0
O1(τ)dτ +∆t4O2.

Therefore, Gronwall’s inequality yields

Ee(t)+
∫ t

0
De(τ)dτ ≤ ∆t4et

(∫ t

0
O1(τ)dτ +O2

)
,

which completes the proof.

5. Numerical results. We investigate the performance of the BOUR method on a two- and three-dimensional
examples. In the first example, we compute numerical errors and rates of convergence. The second example is
based on modeling blood flow in a common carotid artery under physiological conditions. In both examples, we
compare performance of the BOUR method with a couple of other partitioned schemes from the literature, namely
the kinematically coupled β scheme [10, 11] and the incremental displacement-correction scheme. [19].

5.1. Example 1. We present numerical results on a two-dimensional benchmark problem commonly used to
investigate performance of numerical schemes for FSI problems [11, 13, 19]. The problem consists of a pressure
wave propagating in a straight channel. The fluid domain is a rectangle Ω = [0,5]× [0,0.5], which corresponds to
the upper half of the channel, while the symmetry boundary conditions are prescribed on the bottom fluid boundary

∂xuy = 0, uy = 0 on y = 0.

The top boundary represents a thin, elastic structure. To model the structure elastodynamics, we use a generalized
string model

ρsh∂ttηy +
Eh

R2(1−σ2)
ηy−

Eh
2(1+σ)

∂xxηy = fy,

where E is the Young’s modulus and σ is Poisson’s ratio, with the assumption of zero axial displacement, implying
that ux = 0 on Γ. The values of the parameters used in this example are given in Table 5.1.

Parameter Value Parameter Value
Radius R (cm) 0.5 Wall thickness h (cm) 0.1
Length L (cm) 5 Poisson’s ratio σ 0.5
Fluid viscosity µ (g/(cm s)) 0.035 Young’s mod. E(dyne/cm2) 0.75 ·106

Fluid density ρ f (g/cm3) 1 Wall density ρs(g/cm3) 1.1

Table 5.1: Geometry, fluid and structure parameters used in Example 1.
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At the fluid inlet (left boundary) we prescribe

σ(u, p)n=

{
pmax

2

(
1− cos

(
2πt
tmax

))
n it t ≤ tmax,

0 it t > tmax,
(5.1)

where pmax = 1.3333 · 104 dyne/cm2 and tmax = 3 ms. At the right fluid boundary we set σ(u, p)n = 0. The
problem is solved over the time interval [0,14] ms. We use P2−P1 elements for the fluid velocity and pressure, and
P2 elements for the displacement.

Using this benchmark problem, we compare the performance of the BOUR method to an implicit scheme, the
kinematically coupled β scheme [10, 11] and the incremental displacement-correction scheme [19]. The latter two
methods are unconditionally stable, first-order partitioned schemes for FSI problems. A second order partitioned
method previously developed by the authors in [34] is not included in the comparison because of its time step
restrictions. Figure 5.1 shows the structure displacement, while Figures 5.2 and 5.3 show the pressure and the axial
velocity in the center of the channel (bottom fluid boundary), respectively. The results are obtained using ∆t = 10−4

and ∆x = 0.02. The BOUR method gives a good agreement with the implicit method. We note that the incremental
displacement-correction scheme and the kinematically coupled β scheme dissipate energy much faster than BOUR
method.
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FIG. 5.1. Structure displacement at t = 3,6,9 and 12 ms obtained using an implicit scheme (black line), BOUR scheme (red line), kinemat-
ically coupled β scheme (green line) and incremental displacement-correction scheme (blue line) with ∆t = 10−4 and ∆x = 0.02.

To investigate the rates of convergence in time, we simultaneously refine spatial and temporal meshes using the
following set of parameters

(∆t,∆x) ∈
{

5 ·10−4

2i ,
8.3 ·10−2

2i

}3

i=0
. (5.2)

Using a reference solution, we compute the relative L2-error for the fluid velocity and error in the elastic energy-
norm for the structure displacement. The reference solution is obtained by solving an implicit scheme with ∆x =
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FIG. 5.2. Pressure in the middle of the channel at t = 3,6,9 and 12 ms obtained using an implicit scheme (black line), BOUR scheme (red
line), kinematically coupled β scheme (green line) and incremental displacement-correction scheme (blue line) with ∆t = 10−4 and ∆x = 0.02.
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FIG. 5.3. Axial velocity in the middle of the channel at t = 3,6,9 and 12 ms obtained using an implicit scheme (black line), BOUR
scheme (red line), kinematically coupled β scheme (green line) and incremental displacement-correction scheme (blue line) with ∆t = 10−4 and
∆x = 0.02.
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6.3 ·10−3 and ∆t = 5 ·10−6. On the same example, we compute the errors for the kinematically coupled β scheme
and the incremental displacement-correction scheme. Figure 5.4 shows the comparison of the errors and rates
of convergence obtained using the BOUR method (blue line), kinematically coupled β scheme (red line) and the
incremental displacement-correction scheme (green line). We observe that the second order convergence is obtained
using the BOUR scheme, confirming our theoretical results. Furthermore, when compared to other partitioned
schemes, the BOUR scheme exhibits the smallest relative errors.
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FIG. 5.4. Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right) obtained
using the BOUR method (blue line), kinematically coupled β scheme (red line) and the incremental displacement-correction scheme (green line)
with parameters (5.2).

In order to investigate the convergence using the spatial and temporal parameters of the same order, we change
the Young’s modulus to E = 2.5 ·102 dyne/cm2 and take pmax = 10 dyne/cm2 and tmax = 0.6 s in the fluid boundary
condition (5.1). The problem is solved over the time interval [0,1.2] s. All the other parameters are the same as the
ones in Table 5.1. The reference solution is computed using ∆x = 6.3 ·10−3 and ∆t = 5 ·10−4. The time convergence
is investigated using

(∆t,∆x) ∈
{

5 ·10−2

2i ,
8.3 ·10−2

2i

}3

i=0
. (5.3)

Figure 5.5 shows the comparison of the errors and rates of convergence obtained using the BOUR method (blue
line), kinematically coupled β scheme (red line) and the incremental displacement-correction scheme (green line).
Again, the BOUR scheme exhibits the smallest relative errors. We notice that in this case, the asymptotic regime is
achieved faster them when using parameters (5.2).

5.2. Example 2. In this example we focus on a three-dimensional simplified model of blood flow in com-
mon carotid artery under physiological conditions. Blood flow is modeled using (2.1) in a a straight cylinder of
length 4 cm and radius 0.3 cm, see Figure 5.6. The fluid lateral boundary represents a thin elastic wall. The wall
elastodynamics are modeled using a linear membrane model [16, 22, 23], given in the weak form as

ρsh
∫

Γ

∂ 2η

∂ t2 ·ζdS+
∫

Γ

D1η ·ζdS+h
∫

Γ

Πγ(η) : ∇γζdS︸ ︷︷ ︸
as(η,ζ)

=
∫

Γ

f ·ζdS, (5.4)

where η = (ηx,ηy,ηz) denotes the structure displacement. We note that the bilinear form as(η,ζ) in this case was
obtained after operator Lsη was integrated by parts in the equation above. For a linearly elastic, isotropic structure

Πγ(η) =
E

1+σ2

∇γη+∇T
γ η

2
+

Eσ

1−σ2 ∇γ ·η, (5.5)
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FIG. 5.5. Relative L2-errors of the fluid velocity (left) and relative errors in the energy norm for the structure displacement (right) obtained
using the BOUR method (blue line), kinematically coupled β scheme (red line) and the incremental displacement-correction scheme (green line)
with parameters (5.3).

FIG. 5.6. Computational domain used in Example 2.

where E denoted the Young’s modulus, σ denotes the Poisson’s ratio and ∇γ(·) denotes the surface gradient, which
can be computed as [8, 16]

∇γ(η) = ∇η(I−n⊗n),

where the symbol ⊗ denotes the tensor product and I is the identity operator. Term multiplied by D1 in (5.4) takes
into account the constraining effects of the external tissue. Values of the parameters used in this example are given
in Table 5.2.

Parameter Value Parameter Value
Radius R (cm) 0.3 Wall thickness h (cm) 0.06
Length L (cm) 4 Poisson’s ratio σ 0.5
Fluid viscosity µ (g/(cm s)) 0.04 Young’s mod. E(dyne/cm2) 2.6 ·106

Fluid density ρ f (g/cm3) 1 Coefficient D1(dyne/cm3) 6 ·105

Wall density ρs(g/cm3) 1.1

Table 5.2: Geometry, fluid and structure parameters used in Example 2.

At the fluid inlet section Γin we prescribe a fully developed time-dependent axial velocity, and a pressure
waveform is imposed at the outlet Γout using the following boundary conditions [34, 39]

u=

(
0,0,uD(t)

R2− (x2 + y2)

R2

)
on Γin and σn=−pout(t)n on Γout , (5.6)
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FIG. 5.7. Boundary conditions for the fluid domain. Left: inlet velocity. Right: outlet pressure.

where uD(t) and pout(t) are shown in Figure 5.7. All initial conditions are set to zero.
The fluid mesh used in this example consists of 8181 vertices and 41280 tetrahedral elements, while the structure

mesh consists of 2268 vertices and 4480 triangles. We used the time step ∆t = 10−3. The problem is solved using
the BOUR method, an implicit scheme, the kinematically coupled β scheme and the incremental displacement-
correction scheme. All methods reached a periodic solution after three cardiac cycles.

Figure 5.8 shows a comparison of the results obtained using different numerical schemes. Left panel shows
a comparison of the structure displacement at the midpoint of the structure domain (0.5,0.,2) and the right panel
shows a comparison of the fluid velocity at the center of domain (0,0,2). In both cases, the solution obtained with
the BOUR method is in an excellent agreement with the solution obtained using an implicit approach. Event thought
the kinematically coupled β scheme and the incremental displacement-correction scheme gave stable and periodic
results, they significantly differ from the solution obtained by the implicit scheme. Due to their lower convergence
rate, a much smaller time step would have to be used to get satisfactory results.

FIG. 5.8. Comparison of the results obtained using CNFSI scheme and a monolithic scheme. Left: structure displacement. Right: fluid velocity.

6. Conclusions. We proposed and analyzed a novel partitioned method for the interaction between a viscous,
incompressible fluid and a thin, elastic structure. Using energy estimates, we showed that the proposed method
is unconditionally stable. Our error analysis indicates that the method is second-order convergent in time. The
performance of the scheme is tested on two numerical examples and compared to other schemes available in the
literature. While partitioned methods usually require a smaller time step than monolithic methods, our numerical
results show a great comparison between the proposed method and the monolithic method using the same time
step. This is especially apparent in the second numerical example, where the focus is on modeling blood flow in
common carotid artery under physiological conditions. In this example, other partitioned schemes consider in this
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study produced stable, periodic results, but with very poor accuracy when large time steps are used, while the results
obtained using the proposed scheme are in an excellent agreement with the results obtained using the monolithic
method. The accuracy properties of the proposed scheme and its great performance for large time steps are due to
the second-order discretization method used in this study, which is very similar to the midpoint method, and features
only a small amount of numerical dissipation. Given its stability, accuracy and simple implementation, the proposed
method is an excellent alternative to the monolithic scheme.

Some limitations of the proposed method are related to the use of a thin structure model and the assumption
that the displacement is infinitesimal. Using the second assumption, we further assumed that the fluid domain is
fixed, i.e. that the coupling between the fluid and solid sub-problems is linear. This assumption is commonly used
in numerical analysis of FSI problems, but it is often not needed in numerical simulations, where the Navier-Stokes
equations in a moving domain can be used. However, we observed that the assumption of a fixed domain is also
needed in numerical simulations using the proposed numerical scheme. The extension of the method to FSI in
moving domains will be a subject of our future research.
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