Preliminary Exam May 2018

Problem 1. Prove that every real-valued function, continuous on the real interval [0, 1], is the uniform limit of continuous piecewise linear functions.

Problem 2.

- (a) State a theorem that says under what conditions we can differentiate a function series term by term $(\sum_{n=1}^{\infty} f_n(x))' = \sum_{n=1}^{\infty} f'_n(x), f_n : (a, b) \to \mathbb{R}.$ (b) Prove that if a > 1 and $k \ge 1$, then

$$\sum_{k=2}^{\infty} \frac{(\log n)^k}{n^a} < \infty \, .$$

(c) Prove that the function

$$\zeta(x) = \sum_{n=1}^{\infty} \frac{1}{n^x} \quad x > 1$$

is infinitely differentiable in $(1, \infty)$.

Hint: You can use part (b) to prove (c), even if you do not know how to prove (b).

Problem 3. Let $f : \mathbb{Q}^n \to \mathbb{R}$ be a function defined on the set $\mathbb{Q}^n \subset \mathbb{R}^n$ consisting of points whose coordinates are rational numbers. Prove that if f satisfies the inequality $|f(x) - f(y)|^{2018} \leq$ 2018|x-y| for all $x, y \in \mathbb{Q}^n$, then there is a unique continuous function $F: \mathbb{R}^n \to \mathbb{R}$ such that F(x) = f(x) for all $x \in \mathbb{Q}^n$. Provide a direct proof without referring to any deep results.

Problem 4. Let $P = \{(x_1, x_2, x_3, x_4) : x_4 = 0\}$ be a hyperplane in \mathbb{R}^4 . Let $\Phi : \mathbb{R}^4 \to \mathbb{R}^4$ be a C^1 -diffeomorphism of \mathbb{R}^4 onto \mathbb{R}^4 , and let $S = \Phi(P)$ be the image of the hyperplane P under the diffeomorphism Φ . Prove that for every $x \in S$, there is a neighborhood $B(x,\varepsilon) \subset \mathbb{R}^4$ such that the set $S \cap B(x,\varepsilon)$ is a graph of a C^1 function of one of the following forms

$$x_1 = f(x_2, x_3, x_4)$$
 or $x_2 = f(x_1, x_3, x_4)$ or $x_3 = f(x_1, x_2, x_4)$ or $x_4 = f(x_1, x_2, x_3)$.

In the proof you are allowed to use the inverse function theorem or the implicit function theorem only. You are **not** allowed to use the rank theorem.

Problem 5. Let n be a positive integer. Denote by \mathcal{M}_n the space of all real $n \times n$ matrices. By $A^T \in \mathcal{M}_n$ denote the transpose of a matrix $A \in \mathcal{M}_n$ and by $tA, t \in \mathbb{R}$, the matrix where all components of A are multiplied by t.

Prove that if $A \in \mathcal{M}_n$, then there is $B \in \mathcal{M}_n$ and $\varepsilon > 0$ such that $\varepsilon A = B + B^T B$. **Hint.** Differentiate the mapping $F: \mathcal{M}_n \to \mathcal{M}_n$ defined by $F(X) = X + X^T X$.

Problem 6. Let f be a polynomial of total degree at most three in $(x, y, z) \in \mathbb{R}^3$. Prove that:

$$\int_{x^2+y^2+z^2 \le 1} f(x,y,z) \, dx \, dy \, dz = \frac{4\pi f((0,0,0))}{3} + \frac{2\pi \left(\Delta f\right) \left((0,0,0)\right)}{15}$$

Here $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ is the Laplacian operator on \mathbb{R}^3 .