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A Test of a Modular, Wall Adapted Nonlinear Filter Model for

Underresolved Flows

W. Layton and A. Takhirov

A�������. Stabilization using filters is intended to model and extract the energy lost
to resolved scales due to nonlinearity breaking down resolved scales to unresolved scales.
This process is highly nonlinear. We consider nonlinear filters which select eddies for
damping (simulating breakdown) based on knowledge of how nonlinearity acts in real
flow problems. The particular form of the nonlinear filter allows for easy incorporation of
more knowledge into the filter process and its computational complexity is comparable to
calculating a linear filter of similar form. Herein we show how to adapt nonlinear filters
to the near wall region, adapting an idea of Nicoud and Ducros, give a convergence result
for the wall-adapted method and give a test which shows eddy viscosity can be highly
localized and produce an excellent result.

1. Introduction

Nonlinear filtering (NLF), recently introduced in [20], gives an approach to modeling
and simulation of turbulent flows that

• has a strong mathematical foundation,
• yields new turbulence models that can be evolved to greater accuracy and reliability
and

• provides a modular implementation of any selected turbulence models within legacy
codes, laminar flow codes and complex application codes.

The physical idea behind nonlinear filtering is that a turbulence model should act as a
proxy for the action of nonlinearity upon marginally resolved structures. Nonlinearity does
not break down scales uniformly. Intermittence, nonuniformity, locality and backscatter
occur. If nonlinearity breaks down a local structure, the model should strongly and locally
damp the structure while if nonlinearity allows such a structure to persist the modeling
terms should be negligible locally. If this physical idea is realized correctly, the NLF model
immediately corrects through indicator functions the over damping of persistent, transi-
tional, recirculation and other flows in eddy viscosity models. The examples given in [20]
of indicator functions and their associated eddy viscosity models are all adapted to free
turbulence (away from walls). Herein we show in Section 2.2 how to use the WALE eddy
viscosity of Nicoud and Ducros [24] to construct an indicator function for the nonlinear
filter model that is adapted to the important near wall region.

2000 Mathematics Subject Classification. Primary 76F65; Secondary 65M12.
Key words and phrases. turbulence, eddy viscosity, nonlinear filter.
The work of WL and AT was partially supported by NSF grant DMS-0810385.
This paper is an expanded version of one with a similar title. It is not for publication. The extra

material and reformatting is done to make this version easier to read by providing background material and
more explanation.

c©2001 enter nam e of copyright ho lder

1
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Consider the NSE in a domain Ω ⊂ R2 or 3

ut + u · ∇u− ν△u+∇p = f(x, t),(1.1)

∇ · u = 0 , u = 0 on ∂Ω× (0, T ], and u(x, 0) = u0(x) in Ω.

Given a method for the NSE at low or moderate Reynolds numbers, e.g. (LegacyStep)
below, the method (Modular NLFilter) adapts it to high Reynolds number flows by adding
the modular steps (NLfilter) and (Relax) below. Suppressing the spacial discretization: we
advance un ≃ u(tn) to un+1 by:

A	
����
� 1 (Modular NLFilter). Pick χ ∈ [0, 1] and △t > 0, given un, pn

Step 1: Find wn+1

wn+1 − un

△t
+wn+1 · ∇wn+1 − ν△wn+1 +∇pn+1 = f n+1(LegacyStep)

∇ ·wn+1 = 0 and wn+1 = 0 , on ∂Ω.

Step 2: Nonlinear filter: wn+1 → wn+1 by

−δ2∇ ·
(
a(wn+1)∇wn+1

)
+wn+1 +∇λ = wn+1,(NLfilter)

∇ ·wn+1 = 0, and wn+1 = wn+1 , on ∂Ω.

Step 3: Relax:

(Relax) un+1 := (1− χ)wn+1 + χwn+1.

The nonlinear filtering in Step 2 requires solving one linear system. With common FEM
discretizations of (NLfilter) and δ = O(△x) the condition number of the 1, 1 block in the
associated mixed linear system is O(1). To specify (NLfilter), requires selecting the function
a(u,∇u) ( abbreviated a(u)) which we call an indicator function.

D��������� 1.1 (Indicator function). a = a(u,∇u) is a function with 0 ≤ a(·) ≤ 1, and

a(u(x))
.
= 0 for laminar or persistent flow structures

a(u(x))
.
= 1 for rapidly decaying flow structures.

Quite generally, Proposition 1, (Modular NLFilter) is stable and convergent:

Global Error = O(△t+
χ

△t
δ2 + Spacial Error).

1.1. Related work. Linear filter stabilization was developed by Boyd [4] and Fischer
and Mullen [12], [26] (who introduced relaxation in Step 3), used by Dunca [9] and Mathew
et al [25], Garnier, Adams and Sagaut [7] and Visbal and Rizzetta [6] and analyzed in [11].
One clear description for explicit methods (where the whole plan is simplest) was in the
paper [25]; consider an explicit method plus filtering

wn+1 − un

△t
+NSE(u, p)n = f n

un+1 = wn+1.

Eliminating wn+1 gives

un+1 − un

△t
+NSE(u, p)n +

1

△t

[
wn+1 − un+1

]
= f n.

The extra term 1

△t

[
wn+1 − un+1

]
is a diffusion operator but it grows as△t→ 0. The latter

effect is why evolve then filter is often abandoned as over diffusive. Fischer and Mullen [12],
[26] contributed the algorithmically simple but very elegant idea of adding a relaxation
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step and choosing the relaxation parameter to eliminate this growth1. Two salient issues
remained.

• The error induces by Step 2 is normally low: O(δ2).
• Diffusive operators needed for turbulent flows need to adapt themselves to the
local flow structures.

Numerical analysis of modular postprocessing algorithms was begun in [11]. In the nu-
merical analysis of modular stabilizations, this paper was the first step. It studied algorithms
with linear filtering and deconvolution to address the issue of accuracy:

A	
����
� 2 (Linear Filter stabilization). Pick χ ∈ [0, 1] , typically χ = △t , and
△t > 0, given un, pn

Step 1: Find wn+1

wn+1 − un

△t
+wn+1 · ∇wn+1 − ν△wn+1 +∇pn+1 = f n+1

∇ ·wn+1 = 0 and wn+1 = 0 , on ∂Ω.

Step 2a: Linear filter: wn+1 → wn+1 by

−δ2△wn+1 +wn+1 +∇λ = wn+1,(linear differential filter)

∇ ·wn+1 = 0, and wn+1 = wn+1 , on ∂Ω.

Step 2b: Deconvolve:

wn+1 → D
(
wn+1

)
.

Step 3: Relax:

(Relax) un+1 := (1− χ)wn+1 + χD
(
wn+1

)
.

The deconvolution operator for Step 2b analyzed in [11] was van Cittert deconvolution.
Its implementation requires several steps of repeated filtering. The analytical strategy de-
veloped for (Linear Filter Stabilization) carried through as a general approach for nonlinear
filtering. However, almost none of the methods of proof (the tactics) carrier through because
linearity was used throughout the analysis of (Linear Filter Stabilization) in [11]. Extension
to modular implementation of Variational Multiscale Methods was performed in [21].

The idea of modular VMS in its simplest form (the idea of modularity in its simplest
form) is as follows. Suppose one wants to solve the NSE with a stabilization operator we
denote by A (in bold below) included, as in:

un+1 − un

△t
+ un+1 · ∇un+1 − ν△un+1 +∇pn+1 +Aun+1 = f n+1.

Let Π denote a postprocessing operator and consider

wn+1 − un

△t
+wn+1 · ∇wn+1 − ν△wn+1 +∇pn+1 = f n+1

un+1 = Πwn+1.

Eliminating the intermediate variable in one term shows this is

un+1 − un

△t
+wn+1 · ∇wn+1 − ν△wn+1 +∇pn+1 +

1

△t

[
wn+1 − un+1

]
= f n+1.

The extra term is 1

△t

[
wn+1 − un+1

]
= 1

△t [w
n+1 −Πwn+1]. Thus the postprocessing oper-

ator is determined by the equation

1

△t
[w −Πw] = A (Πw) .

1They also used higher order filters with pseudospectral methods. These are all very interesting papers
with many contributions glossed over in this short summary.
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The difference between wn+1 · ∇wn+1 and un+1 · ∇un+1 is a higher order term (but must
still be accounted for in the stability and convergence analysis).

The development of modular filter based stabilization culminated in using nonlinear
filters to adapt models in [20]. The three indicator functions tested in worked well away
from walls. Thus, the main question (considered herein) was: How to treat the near wall
region? Nonlinear filters have since been applied to regularizations in [2] and Olshanskii
and Xiong [23] have recently given a precise elaboration and analysis of the connection of
(Modular NLFilter) with an eddy viscosity model.

2. Three Examples of Indicator Functions and Nonlinear Filters

The method (NLfilter) is no better than the indicator function selected. This limitation
has been one intractable difficulty in previous eddy viscosity models: the EV used is over-
sensitive to some persistent structures and the calculation is over-damped as a result. The
idea of nonlinear filters is that different indicator functions with different sensitivities can
be combined to advantage: since the geometric average of indicator functions is again an
indicator function, given indicator functions ai(u), i = 1, · · ·,M , we can choose in (NLfilter)

(2.1) a(u) := M

√
ΠMi=1ai(u)

addressing the over-sensitivity problem. Thus, modularity has the added advantage that

evolving the accuracy and reliability of the induced turbulence model means adding one
function subroutine.

These ai(u) are obtained from theories of intermittence and eduction. We review three
indicator functions in [20] then construct and test a wall adapted indicator from the WALE
model of [24], the main contribution herein.

2.1. Three indicators tested in [20]. The Q criterion indicator. The Q criterion
[18] marks persistent, coherent vortices where Q > 0 or local rigid body rotation dominates
deformation:

Q(u, u) : =
1

2
(∇ssu : ∇ssu−∇su : ∇su) where

∇su : =
1

2

(
∇u+∇utr

)
and ∇ssu :=

1

2

(
∇u−∇utr

)
.

Rescale so Q > 0 or Q < 0 corresponds to a(u) close to 0 or 1, respectively.

D��������� 2.1. A Q-criterion indicator function is

aQ(u) :=
1

2
+
1

π
arctan (−Q(u, u)) .

The functional form chosen is not unique. The Q indicator seems to be sensitive to the
exact functional form chosen to construct the indicator function so further testing is needed
for this indicator.

Vreman [29] constructs an eddy viscosity model based on a function B(u) below. B(u)
is constructed to vanish for many coherent (non turbulent) flows:

|∇w|2F =
∑

i,j=1,2,3

(
∂uj
∂xi

)2, βij :=
∑

m=1,2,3

∂ui
∂xm

∂uj
∂xm

, and

B(u) : = β11β22 − β
2
12 + β11β33 − β

2
13 + β22β33 − β

2
23.

Let |∇u|F denote the Frobenius norm of ∇u

|∇u|F :=

√√√√
∑

i,j=1,2,3

∣∣∣∣
∂uj
∂xi

∣∣∣∣
2

.

The construction of the Vreman indicator below uses that

0 ≤
B(u)

|∇u|4F
≤ 1.
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D��������� 2.2. The Vreman indicator function is

aV (u) =
√
B(u)/|∇u|4F .

Relative helicity density. Let ω = ∇× u. Helicity is the total streamwise vorticity.
It is an integral invariant of the 3d Euler equations in the absence of boundaries.

D��������� 2.3. The helicity is

H(t) :=
1

|Ω|

∫

Ω

u · ωdt.

The helicity density is

HD(x, t) := u(x, t) · ω(x, t)

The relative helicity density is

RHD(x, t) =
u(x, t) · ω(x, t)

|u(x, t)||ω(x, t)|
.

High helicity suppresses nonlinearity and thus breakdown by the NSE nonlinearity.
(Helicity may also related to intermittence, e.g., [28].) Indeed, helicity, u · ω, and the NSE
nonlinearity, u× ω, are related by

Helicity2 + |NSE nonlinearity|2

|u|2|ω|2
= 1.

Thus, per unit energy and enstrophy, local regions of high helicity means locally low non-
linearity and visa versa.

D��������� 2.4. The relative helicity indicator function is

aH(u) := 1−

∣∣∣∣
u(x, t) · ω(x, t)

|u(x, t)||ω(x, t)|+ δ2

∣∣∣∣ .

3. A Wall Adapted Indicator

Many models, including the ones induced by the above indicator functions, are optimized
for turbulence away from walls. One exception is the WALE eddy viscosity model of Nicoud
and Ducros [24] which accounts for both strain and rotation of the smallest resolved scales
and recovers the proper y3 near-wall eddy viscosity scaling. Let g2ij = ∂uj/∂xi and g

2
ij :=

gikgkj (summation convention). Consider the traceless symmetric part of g
2
ij :

Sdij =
1

2
(g2ij + g

2
ji)−

1

3
δijg

2
kk, δij = Kronecker δ.

Nicoud and Ducros [24] construct an eddy viscosity model beginning with

(3.1) W (u) :=
(Sd(u) : Sd(u))3/2

(Sd(u) : Sd(u))5/4 + (D(u) : D(u))5/2
.

We adapt W (u) to an indicator function as follows.

D��������� 3.1. The wall adjusted indicator function is given by

aWALE(u) :=
2.0

π
arctan

(
1

δ

|W (u)|

δ2 + |W (u)|

)
.

The form of the arctangent function in a(u) is one of many options. Considering the
plot a = a(W ) (below for δ moderate), a(W ) transitions quickly from zero where W (u) = 0
to near 1 at all other values of W (u).
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W

a(W)

Indicator: a(W ) against W

4. Convergence of Nonlinear Filter Based Stabilization

There is a general stability and convergence theory for (Modular NLFilter) from [20]
which implies convergence for the WALE indicator based model.

P���������� 1 (Unconditional Stability and Convergence, [20]). Let spacial discretiza-
tion be by finite element methods with velocity-pressure finite element spaces satisfying the
discrete inf-sup condition. The energy equality (implying stability) holds:

1

2
||ulh||

2 +△t
l−1∑

n=0

{
△t

2
||
wn+1h − unh

△t
||2 + ν||∇wn+1h ||2

}
+

△t
l−1∑

n=0

χ

△t

{
2− χ

2

(
wn+1h −wn+1h

h
, wn+1h

)
+
χ

2

(
wn+1h −wn+1h

h
, wn+1h

h
)}

=

=
1

2
||u0h||

2 +△t
l−1∑

n=0

(fn+1, wn+1h ) , for any l > 0,

For 0 ≤ χ ≤ 2 the model diffusion term is non-negative:

χ

△t

[
2− χ

2

(
wn+1h −wn+1h , wn+1

)
+
χ

2

(
wn+1h −wn+1h , wn+1h

)]
≥ 0.

Let 0 ≤ χ ≤ 1 and suppose the velocity, pressure spaces contain piecewise polynomials of
degree (k, k − 1). For u, p, and f sufficiently regular, the errors satisfy

‖u(tl)− wlh‖+ ||u(t
l) − ulh‖+

(

ν∆t
l∑

n=1

‖∇(u(tn) − wnh)‖
2

)1/2

≤

≤ C(u, p, data, ν)

[
hk +∆t+

χ

△t
(γhk + hk+1 + δhk + δ2min{δ−1, ||∇ · (a(wh)∇u)||

2})

]
.

The model dissipation induced by steps 2 and 3 is independent of Step 1 and is of eddy
viscosity type

Model Dissipation =
χ

△t
δ2 (a(w)∇w,∇w) +HOdissipationTs.
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5. Numerical Experiments

Our tests of the WALE indicator in (Modular NLFilter) used FreeFEM++ [17] and
Taylor-Hood elements (Xh = C

0 piecewise quadratics, Qh = C
0 piecewise. linears).

Test of the convergence rate. First we test the predicted error and convergence
rates for a = aWALE(·) for the Green-Taylor vortex [13], [14]:

u1(x, y, t) = − cos(ωπx) sin(ωπy) exp(−2ω2π2t/τ)

u2(x, y, t) = sin(ωπx) cos(ωπy) exp(−2ω2π2t/τ)(5.1)

p(x, y, t) = −
1

4
(cos(2ωπx) + cos(2ωπy)) exp(−2ω2π2t/τ)

When τ = Re, this is a solution of NSE with f = 0, consisting of ω × ω array of oppositely
signed vortices that decay as t → ∞. We take ω = 1, τ = Re = 100, Ω = (0, 1)2, χ = ∆t,
δ = ∆x and T = 0.1. Table 1 shows the predicted convergence rates.

∆t h, δ ‖|u− uh|‖2,1 rate

0.005 1

4
0.0955 −

0.005
2

1

8
0.0264 1.86

0.005
4

1

16
0.0048 2.46

0.005
8

1

32
0.0012 2

(Table 1)

Errors and convergence rates: (Modular NLFilter) using aWALE(·)

Flow over a step. The domain is a 40× 10 rectangular channel with a 1× 1 step five
units into the channel. Boundary conditions are no-slip on the top, bottom boundaries, a
parabolic inflow profile (y(10 − y)/25, 0)T , ∆t = 0.01, ν = 1/600 and do-nothing outflow.
The correct behavior is a smooth velocity field away from the step and for eddies to peri-
odically form and shed behind the step. While not turbulent, this flow is a good test if a
turbulence model over damps important dynamic structures. Generally, under damping and
under resolved gives nonsensical solutions and over damping gives one large attached eddy
that does not break up. First we shown below velocity streamlines over speed contours at
T = 40 for 2D flow over a step, found by an under resolved NSE solution ( Step 1 without
Steps 2 and 3, no filtering), on meshes with 1762 and 3226 dof. These are nonsensical
compared to fully resolved simulations in [5].

Next compare these nonsensical solutions to solutions on the two same meshes using
the modular nonlinear filtering model with the WALE indicator.

Compared to fine mesh results in [5], both velocities are accurate in major features and
the eddy behind the step is starting to break up roll downstream. Outflow boundary noise
is typical behavior. We next give plots of (the scalar) aWALE(u) for the two meshes.

As expected, stabilization is needed around the outflow boundary. It is remarkable that,
away from the outflow region, the WALE indicator localized eddy viscosity to a very small
area at the leading edge of the step. The WALE indicator shows that beyond a few mesh
cells there, no extra eddy viscosity or stabilization is needed to get a good, coarse mesh
approximation.

6. Conclusions

With nonlinear filtering, w −w and thus model dissipation is small in laminar regions
and regions of persistent, coherent flow structures. It reduces both numerical and modeling
errors and model dissipation more closely mimics the exact physics of the energy cascade.
Nonlinear filtering reduces implementing a complex turbulence model in a flow code (possibly
a legacy code of great length) to solving one well conditioned linear system each time
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��� 1. Velocity, T = 40, 2D step, Underresolved NSE solution, 1762 dof
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F�
��� 2. Velocity, T = 40, 2D step, Underresolved NSE solution, 3226 dof

step. Model accuracy is increased simply by providing additional function subroutines. The
WALE indicator by itself and without combination of other indicators precise localizes the
EV needed for the tested flow. We conjecture that this is because step flow is about flow-
wall interactions for which WALE is an excellent tool and that for combinations of flow-wall
interactions with free turbulence and coherent structures, combinations of WALE with other
indicators would produce improved results over WALE alone.
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