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Abstract. In 2d decaying turbulence, all solutions eventually → 0 as t → ∞ after a long
period of approximately constant kinetic energy. This report proves that during this dynamically
interesting, long period the separation between two trajectories can have at most linear growth in
time (saturating at O(ν−1)):

||u1(t)− u2(t)|| ≤ exp(−νt){||u1(0)− u2(0)||+Cmin{t, ν−1}}.

Key words. chaos, predictability, decaying turbulence, Lyapunov exponent

AMS subject classification.

1. Introduction.

This is a supplementary version, containing extreme detail, of a report

with similar title.

Even if the fundamental problem (of uniqueness of weak solutions) is resolved
positively, the critical issue of predictability remains. It is thought that severe limits
to predictability are due to chaotic dynamics (the NSE having both an absorbing
ball and exponential local separation of trajectories, [11]). The possibility of chaotic
dynamics is still a topic of interest and impact for 2d flows as these are often taken
as a model for flow in thin layers, e.g. [4]. We show herein that, in the long period of
dynamic interest1 , for 2d decaying turbulence trajectories separate at most linearly
with rate independent of ν or Re. Proposition 1.1 below (whose proof is particularly
simple) reveals a gap between chaotic dynamics and predictability in that the latter
issue remains open.

Let u1, u2 denote two solutions of the 2d, unforced NSE for small ν on Ω =
(0, 2π)× (0, 2π) with periodic boundary conditions (and zero mean) corresponding to
different initial conditions

uj,t + uj · ∇uj − ν�uj +∇pj = 0, and ∇ · uj = 0 (1.1)

where ε := ||u1(x, 0)− u2(x, 0)|| > 0,

with || · || the L2(Ω) norm. Due to the triangle inequality and the basic energy
estimate, the deviation is bounded and after a long initial period → 0

||u1(t)− u2(t)|| ≤ e
−νC

−2

PF
t{||u1(0)||+ ||u2(0)||}.

∗ Dept. of Mathematics, Univ. of Pittsburgh, Pittsburgh, PA 15260, USA, wjl@pitt.edu,
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1 The standard estimate is

||u(t)||2 ≤ exp(−2νC−2PF t)||u(0)||2

which predictes a half-life of the kinetic energy of

T1/2 =
ln(2)C2PF

2
ν−1.

If, for example, ν = 10−4 this forecasts a very long period of approximately constant energy.
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The nonlinear term vanishes (and is not put on the RHS) in its derivation. Thus,
this basic estimate gives a saturation level that in many cases is smaller than that
derivable by other methods (in which the nonlinearity is fought). Nevertheless, there
is still interest in estimates of deviations that improve the above for small ε and time
intervals of dynamic interest. For these estimates, Gronwall’s inequality becomes a
basic tool and exponential (local) separation seems to be the inevitable prediction.
However, due to self-organization of 2d decaying turbulence (e.g., [4], [6], [7], [5], [3]),
it is plausible that the rate of separation of velocities may not be exponential and
predictability increased. We prove that linear separation until saturation is worst
possible.

Let CPF
2 denote the constant occurring in the Poincaré-Friedrichs inequality, C1

the constant in the embedding inequality3 ||v||2L4 ≤ C1||v||||∇v||, H
1
#(Ω) the closure

under the norm ||∇v|| of the smooth, zero mean, divergence free, 2π periodic functions

C′ = 2C1 (||∇u1(0)||+ ||∇u2(0)||) ||∇u2(0)|| and

m(t) = min{t, C2PFν
−1}.

P���������� 1.1 (Linear Separation). For u1(0), u2(0),∇u1(0),∇u2(0) ∈ H
1
#(Ω)

||u1(t)− u2(t)|| ≤ exp(−νC
−2
PF t){ε+

C′

2
m(t)}. (1.2)

In (1.2) the separation of two trajectories is not controlled by the initial separation
ε and thus the question of predictability remains open. The standard estimate from
Gronwall’s inequality is as follows.

P���������� 1.2 (The Standard Estimate). Under the above assumptions

||u1(t)− u2(t)|| ≤ exp(−
ν

2
C−2PF t) exp

{
C1||∇u2(0)||

2

2ν
min{t,

1

2
C−2PF ν

−1}

}
ε. (1.3)

In comparison to Proposition 1.1, (1.3) predicts a long period of exponential sep-
aration before decay and that if u1(0) = u2(0) then u1(t) = u2(t) for all t thereafter.
Thus, the interest in Proposition 1.1 is that separation is not exponential under pe-
riodic boundary conditions. This result may be due to non-creation of vorticity at
the boundary under periodic boundary conditions since the proof uses a uniform in
ν estimate on ∇u (or equivalently ∇ × u) not valid under, e.g., no slip boundary
conditions. This difference may explain why the (very interesting) experiments in [1]
show exponential separation4 for 2d decaying turbulence. A positive effective averaged
Lyapunov exponent was also observed for no-slip boundary conditions in [8].

2 For u,∇u ∈ H1
#
(Ω) there holds:

||u|| ≤ CPF ||∇u|| and ||∇u|| ≤ CPF ||
u||,
Here CPF = λ−2

min
where λ is the smallest eigenvalue of the Stokes operator under the given boun-

ndary conditions. For the given domain Ω = (0, 2π)2 and periodic with zero mean boundary condi-
tions CPF = λmin = 1.

3C1 <∞ since Ω is bounded and 2d. Alternately, C1 could be defined by

C1 = sup

{ ∫
Ω
v · ∇w · vdx

||∇w||||v||||∇v|| : 0 �= v, w ∈ H
1
#(Ω)

}
.

4 While Figure 1, page 727 resembles m(t), the scale is logarithmic showing clearly exponential
separation.
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R����� 1.3. Linear separation also holds if (linear) terms modelling any of
the following effects are added to the NSE: hyperviscosity, Coriolis force and bottom
friction ∝

(
νπ2

)
/
(
4H2

)
due to flow of a thin layer over a no-slip surface.

2. Proof of Proposition 1.1. Let φ(t) := u1(t)− u2(t). Subtracting two real-
izations of (1.1), multiplying by φ, integrating and rearranging the nonlinear terms,
gives

d

dt
||φ||2 + 2ν||∇φ||2 = −2

∫

Ω

φ · ∇u2 · φdx.

For the RHS we apply the standard estimate

|2

∫

Ω

φ · ∇u2 · φdx| ≤ 2||∇u2||||φ||
2
L4 ≤ 2C1||∇u2||||φ||||∇φ||.

R����� 2.1. The usual step (leading to Proposition 1.2) is to apply Gronwall’s
inequality after

|

∫

Ω

φ · ∇u2 · φdx| ≤
ν

2
||∇φ||2 +

C

ν
||∇u2||

2||φ||2

leading to exponential growth exp(C
ν

∫ t
0
||∇u2||dt′) with rate constant →∞ as ν → 0.

A non-exponential growth rate thus requires not subsuming ||∇φ|| in the viscous
term and exploiting features of 2d decaying turbulence. Instead we bound ||∇φ|| ≤
||∇u1|| + ||∇u2|| which → 0 as t → ∞. Recall that in the 2d, periodic case

∫
Ω
u ·

∇u ·�udx = 0. Multiplying (1.1) by −�u, using ||∇u|| ≤ CPF ||�u|| and integrating
leads to another (well known) estimate for u = u1, u2:

||∇u(t)|| ≤ exp(−νC−2PF t)||∇u(0)|| (2.1)

and thus ||∇φ|| ≤ exp(−νC−2PF t) (||∇u1(0)||+ ||∇u2(0)||). Using both estimates

d

dt
||φ||2+2νC−2PF ||φ||

2 ≤
[
2C1 exp(−2νC

−2
PF t) (||∇u1(0)||+ ||∇u2(0)||) ||∇u2(0)||

]
||φ||.

Multiplying by exp(+2νC−2PF t) we have (denoting k(t) := C′ exp(−νC−2PF t) and x(t) =
exp(+νC−2PF t)||φ(t)||)

d

dt

(
x2
)
≤ k(t)x(t) and x(0) = ε > 0.

At this point we may apply Bihari’s lemma5 , p. 16 in [2]. The simpler path is to

5 Bihari’s lemma, p. 16 in [2], applies to:

x(t) ≤M +

∫ t

0

k(s)g(x(s))ds,

k(t) ≥ 0,M > 0,

g(·) non-decreasing and positive on a half-axis.

It states that if G(·) is a primitive of 1/g(·) it states that

x(t) ≤ G−1(G(M) +
∫ t

0

k(s)ds).
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differentiate and cancel giving

d

dt
x(t) ≤

1

2
k(t) and x(0) = ε > 0, thus

x(t) ≤ ε+
1

2

∫ t

0

k(s)ds.

We obtain6

exp(+νC−2PF t)||φ(t)|| ≤ ε+
C′

2

[
1− exp(−νC−2PF t)

νC−2PF

]
.

The result follows since78

1− exp(−at)

a
≤ min{t, 1/a} =m(t), a = νC−2PF .

2.1. Supplement: Proof of the standard estimate. We give a short proof
of Proposition 1.2 in this supplementary subsection.

Step 1: An estimate for ∇u: Taking the inner product of the NSE with −�u
and performing the standard steps gives d

dt
||∇u(t)||2 + 2νC−2PF ||∇u||

2 ≤ 0. Using an
integrating factor

||∇u(t)||2 ≤ exp{−2νC−2PF t}||∇u(0)||
2.

Step 2: Subtracting the two realizations of the NSE, adding and subtracting in
the nonlinearity and taking the inner product with φ(t) gives

1

2

d

dt
||φ(t)||2 + ν||∇φ(t)||2 = −

∫

Ω

φ · ∇u · φdx

≤ ||∇u||||φ||2L4 ≤ C1||∇u||||φ||||∇φ||

≤
ν

2
||∇φ||2 +

1

2ν
C21 ||∇u||

2||φ||2.

To apply Bihari’s lemma, drop the second term. Set g(x) =
√
x,G(y) = 2

√
x,G−1(x) =

(x/2)2, k(t) as in the text, and M = y(0). Then

x(t) ≤M +

∫ t

0

k(s)g(x(s))ds.

Bihari’s lemma then concludes that

x(t) ≤ G−1
(
G(x(0)) +

∫ t

0

k(s)ds

)
.

After simplification, this is the claimed result.
6 We calculate

∫ t

0

k(s)ds =

∫ t

0

C′ exp(−νC−2PF s)ds == C′
[
1− exp(−νC−2PF t)

νC−2PF

]

.

7 In the spirit of providing every detail in this supplementary version: Recall t ≥ 0 and a > 0.
Clearly then

1− exp(−at)
a

≤ 1

a
.

Thus, we must show only that 1−exp(−at) ≤ at or equivalently f(t) := exp(−at)−1+at ≥ 0. Since
f(0) = 0 and f ′(t) = a(1− exp(−at)) ≥ 0, we have f(t) ≥ 0.

8 A plot of the LHS and the RHS shows that the upper estimate does capture both asymptotics
of t→ 0 and t→∞.
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Thus, y(t) = ||φ(t)||2 satisfies

y′(t) + νC−2PFy(t) ≤
C21
ν
||∇u(t)||2y(t).

Using Step 1 gives

y′(t) +

[
νC−2PF −

C21
ν
exp{−2νC−2PF t}||∇u(0)||

2

]
y(t) ≤ 0.

Let a(t) = νC−2PF −
C2

1

ν
exp{−2νC−2PF t}||∇u(0)||

2 and

A(t) =

∫ t

0

a(s)ds = νC−2PF t−
C21
ν

1− exp{−2νC−2PF t}

2νC−2PF
||∇u(0)||2.

Recall
(
1− exp{−2νC−2PF t}

)
/2νC−2PF ≤ min{t,

1
2
C−2PFν

−1}. Thus y(t) ≤ exp(−A(t))y(0),
which yields the standard estimate

||φ(t)||2 ≤ exp{−νC−2PF t+
C21
ν
min{t,

1

2
C−2PFν

−1}||∇u2(0)||
2}ε2.

3. Conclusions. Comparing the crossover points between (1.2) and (1.3), expo-
nential separation (e.g., [10]) is only an accurate description for very small time and
very small initial separation. Linear separation of trajectories is the most accurate
description through most of the dynamically interesting period. Thus, 2d decaying
turbulence is not chaotic according to the description of a chaotic system as one with
an absorbing ball and a positive Lyapunov exponent, Lorenz [11]. Further, the criti-
cal question of predictability, [9], [4], is related but not equivalent to that of chaotic
dynamics.
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