A SECOND-ORDER SYMPLECTIC METHOD FOR AN
ADVECTION-DIFFUSION-REACTION PROBLEM IN BIOSEPARATION *

FARJANA SIDDIQUAT AND CATALIN TRENCHEA?

Abstract. We consider an advection-diffusion-reaction problem with non-homogeneous boundary conditions modeling the
chromatography process, a vital stage in bioseparation. We prove stability and error estimates for both constant and affine
adsorption, using the midpoint method for time discretization and finite elements for spatial discretization. We also did the
stability analysis for nonlinear, explicit adsorption in continuous case. We performed the numerical tests that validate our
theoretical results.
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1. Introduction. The global market for biopharmeceuticals is expected to hit $856.1 billion by 2030
and 50% of top 100 drugs will most likely be derived from biotechnology [1,14]. The high demand for
biopharmaceuticals is due to their effectiveness to treat various illness such as diabetes, anemia, cancer,
etc. [25]. Other key factors driving the growth of the market are rising investments in the research and
development of novel treatments, favorable government regulations, and increasing adoption of biopharma-
ceuticals by the global population [1]. To maximize the production capacity while minimizing its costs,
manufacturers are constantly developing new methods. As an alternative to constructing new biomanu-
facturing facilities due to financial risk, integrating new technologies into existing facilities would be more
economically viable. Upstream and downstream processes are typically part of a biomanufacturing facility.
In the upstream process, cells cultured by genetically engineered methods release the desired product into
a solution and in the downstream process, the product is purified from the solution [13]. The capacity of
production is often limited by downstream purification, usually including chromatography. In the protein
chromatography process, when the solution is pushed through the column, the materials in columns separate
the proteins [34]. Ideal media for chromatography columns used for bioseparation are resin beds, monoliths,
and membranes [33]. Membrane chromatography [6-8] addresses the low efficiency of resin chromatography,
and uses a porous, absorptive membrane as the packing medium instead of the small resin beads The protein
binding capacity is crucial in membrane chromatography as it determines the volume of membrane required
for purification. Most absorption mechanisms, such as ion-exchange membranes, lose the protein binding
capacity at relatively low conductivity and often requires additional processing stages, causing lower yield
and higher production cost. Recent research in [7] has focused on multimodal membrane-based chromatogra-
phy. The development of a modeling framework capable of characterizing the chromatography process under
continuous flow circumstances is critical. To model this process for creating a simulation tool for transport in
a porous medium, the reactive transport problem (advection-diffusion-reaction problem) considered in [34]
is given below.

Let Q be a bounded domain in R9, d = 1, 2, or 3 with piecewise smooth boundary I". We partition
the boundary into three non-overlapping segments I' = Ty, UT',, U T,y where inflow boundary, 'y, = {z €
I : 7 -u(z) < 0}, outflow boundary, [owe = {2 € ' : 7 - u(z) > 0} and boundaries comprising no-flow
hydraulic zone(s), T',, = T'\(Iijn U Tout). Let u be a fluid velocity through the membrane and 77 denote the
unit outward normal to 2. We consider u is given, which is computed by Darcy [18] satisfying V -u = 0
and u - %)(x,t) =0, ze€Tl,, t>0 ULetw be the total porosity of the membrane (0 < w < 1), ps
be the density of the membrane, D be the diffusion tensor that represents diffusivity of fluid through the
membrane, C' and ¢(C) be the concentration in the liquid and absorbed phases respectively. For a forcing
function f € L?(0,T; L?(Q)), given velocity u and initial concentration Cy € L?(Q), we consider the following
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initial boundary value problem of finding concentration C(z,t):

wdC 4+ (1 —w)psOeqg(C)+ V- (uC) -V - (DVC)=f, z€Q, t >0,
(1 1) C(I,t):g, xeFiny t>07
' (DVC) -7 (2,t) =0, x € T,, UTou, t >0,
C(z,0) = Co(x), z €.

For the inflow boundary, we keep the fixed concentration [5,18]. The illustration of the domain is given in

1_‘in

Y

1_‘out

Fig. 1.1: Domain 2

Figure 1.1.

In our paper, we consider three cases of isotherms. They are constant isotherm, ¢(C) = K, affine
isotherm, ¢(C) = K; + K>C and nonlinear, explicit isotherm ¢(C). A typical example for the nonlinear,
explicit isotherm is Langmuir’s isotherm [8,31], ¢(C) = %,
constant, ¢mnqe 18 the maximum binding capacity of the porous medium. The main result of this paper is
gaining improved accuracy by using the midpoint method for time discretization at the same computational
cost as the Backward Euler method. The accuracy comes in two ways, such as rate of convergence is higher
and the mass is better conserved when the midpoint method is used. The fully discrete formulation of the
considered problem is given in Section 3. The stability analysis and error analysis for constant and affine
q(C) are given in Section 4. We also show the stability analysis for the nonlinear, explicit ¢(C) in the same
section. Numerical tests validating these estimates are given in Section 5.

where K., is Langmuir equilibrium

2. Notation and Preliminaries. We denote the L?(Q2) norm and inner product by | - || and, (-,-)
respectively. We denote the usual Sobolev spaces W™P () with the associated norms || - ||ym.»(o) and in the

case when p = 2, we denote W™2(Q2) = H™(Q) = {v € L*(Q) : % € L*(Q), |a| < r} where « is a multi-

index, with norm |v||, = (Z|a\§r Jo
is defined as:

2
9%

1/2
oo dQ) . The function space for the liquid phase concentration

Hip, () :={v:ve H(Q) withv=0on Ty}
We define the space H'/?(Tiy) := {g € L*(T'n) : [|g]l s1/2(r,,) < o0} where

ol = Jnf 1G] o).

Tin=g
The Bochner Space [2] norms are
1
3

T
1Cl[z2(0,7;x) = (/ IIC(wt)Iggdt) , ICll Lo o,m5x) = ess sup [|C(-,)]|x.
0 0<t<T
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We also define discrete LP-norms with p = 2 or oo

N
1C 20,7, x) = (At;}HC”H?}(), ICl Lo 0,1,x) = Og}%XN 1C™ | x-

For the Finite Element Approximation, we consider a regular triangulation of Q, 7, = {A} with Q =
Uaer, A- We choose a finite dimensional subspace X, C H'(Q) and define

X(}JL,F“, ={vp € Xp: vp =0o0n i}

with @ a polyhedron, X}~ C Hjp (92). We let Xt denote the restriction of functions in Xj, to the
boundary T}, and define X = {v;, € Xp : v, = 0 on 9Q} with Q a polyhedron, X} € H}(2). Throughout,
K will denote a constant taking different values in different instances. We assume that there exists a k > 1
such that X}, possesses the approximation property,

(2.1) IC —Crlls < Kh"°||C||y, for s=0,1 and 1 <r<k+1

inf
CrheXn

For example, (2.1) holds if X}, consists of piecewise polynomials of degree< k. We assume that a similar
approximation holds on X[. In particular, if C' € H"(2) N H (), we will use

(2.2) inf ||C —Cy|lL < Kh" Y|,
ChEX(})L

We further assume that the space Xl’lm possesses the approximation property

2.3 inf ||C —C
(2.3) c,,leI}g [ hl

0. < KB V2|Cllesrjor-

in

LEMMA 2.1. For allv € H&)FW(Q), there exists a constant Kpp such that

[vll1 < Kpp|Voll.

Proof. This is the direct consequence of the Poincaré inequality that holds for v € Hj ., (€2) [20]. d

LEMMA 2.2. Given g € H'=Y2(Ty,) for r > 1, let ;g denote the Xﬁn—interpolant of g. Then, if X},
satisfies the approximation properties (2.1)-(2.3),
(2.4) it O = Cully < KRV
Epexy,
Chlr;,=Tnhy
Proof. This proof follows the proof of [21, Lemma 4]. We give the proof for reader’s convenience. Let

I1;,C denote Xp-interpolant of C' and Il g denote X{im— interpolant of g. Then, for éhh" = Il g, we write
the triangle inequality

in

(2.5) |C — Chlly < ||C = TLC1 + ||Ch — TILC 1.

From the interpolation theory [9], we get,

(2.6) IC =T, Clly < KR YO,
We may choose C, so that it has the same value at all interior nodes as does IT;,C. Since Cy|r,, = ITg and
(I1,C)| = Mg, we get (Cy, — I1;,C) = 0, which concludes the argument. |

in
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2.1. Assumptions. We make the following assumptions [34]:
(F1) w and p; are constants in time and space [18].
(F2) u is nonzero and bounded in L™ norm [12,29].
(F3) D(x) = [dijlij=1,2,.,n is symmetric positive definite and ||D|sc < fi, |8%idij| < o, for all i,j
[3,12,18,29].
(F4) There exists a unique solution C' € L*°(0, T, L*(Q)) N L(0, T, H(£2)) [29].
(F5) ¢ = q(C) € C! is an explicit, Lipschitz continuous function of C, ¢(0) = 0, ¢(C) > 0 for C' > 0 and
q(C) is strictly increasing. Moreover, we assume that ¢'(C) > k1 > 0 VC > 0 [4,17,18,27-29].
(F6) The rate of increase in adsorption is Lipschitz continuous and bounded above, so that g—g =¢'(C) < ko
[18].
(F7) The second derivative of the adsorption, ¢”(C'), is Lipschitz continuous and bounded.
Remark 2.3. In our analysis, we drop the assumption “C'(z,t) is nondecreasing in time at every x and
C(z,t) =0 on T';,” stated in [34]. Instead, we considered the non-homogeneous boundary condition at the
inflow boundary.

In [4,17,18,29,34], another assumption on the continuous and the discrete solution was imposed, namely
that “C is non-negative”. Using a maximum principle argument, we now prove that the continuous solution
is positive and bounded above for all (z,t) € Q x (0,T).

PROPOSITION 2.4. Assuming no forcing term f = 0 and positivity of the initial condition 0 < Cy(x),
then we have

0<Clzx,t) < meaé({C(x, 0),9(x)} for all (z,t) € Q x [0,7T)

of (1.1) is positive and bounded by the initial condition and the boundary condition g.

Proof. Since u is incompressible, we rewrite the convective term as
V-wC)=(V-u)C+u-VC=u-VC.
Next, we rewrite the adsorption term as

d¢  9q0C , . 9C

o acar 1%

Then the equation (1.1) writes
(2.7) (w+ (1 =w)psd (C)KC +u-VC -V - (DVC)=f, 2€Q, t>0.

Since ¢'(C) > 0 by assumption (F5), we can divide (2.7) by (w + (1 — w)psq’(C)). Hence, assuming f = 0,
(2.7) writes,

- 0*C . 0D oC
o o / —1 . o / -1 o, -
A0+ 3+ 1= () Dw>6xiaxj+§_jl(<w+<1 e (O (G2 = ws) ) g =0

We assume that Co(x) > 0. Suppose the claim in the proposition is false. Then there is a y € Q and T > 0
such that C(y,T) = 0 and C(x,t) > 0 for (z,t) € Q X [0,T). Therefore, by Maximum Principle [26, pages
173-174], C(x,t) is on the boundary and (DVC) - 7 (x,t) < 0. This contradicts the boundary condition we
have in (1.1). Hence, we prove the claim. |

3. Variational Formulation. The standard Galerkin variational formulation for (1.1) is: Find C €
H'() such that C| =g and

in

(3.1) (w+ (1 - w)psq’(C))aa—C, v) + (u- VC,0)+(DVC, Vv) = (f,v), for all v € Hjp, (),

t
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where we used the Green’s Theorem to the diffusive term, the boundary condition (DVC)-n(z,t) =0, x €
I',, UTou and the fact that v € H&Fm to get

—(V - (DVC),v) = — /F(DVC) - Avds+ (DVC,Vv) = (DVC, V).

Next, we write a finite element approximation of the variational formulation of the transport problem. We
state both semi-discrete in space and fully discrete approximations.

3.1. Semi-Discrete in Space Approximation. We denote g; as interpolant of g. Then we obtain

the following semi-discrete in space formulation: Find C} € X}, such that C}, =gy € X{im and

oCy,
ot ’

3.2. Fully-discrete approximation. We partition the time interval as t)g =0 <t <te <--- <ty =
T. Let At = t,41 — tn be the time step size, ¢, = nAt and f"(z) = f(xz,t,). Let CJ(x) denote the Finite
Element approximation to C(x,t,). We define t,,,,5 = % First, we recall the first order Backward

Euler time discretization scheme for Finite Element Approximation (3.2): Given CJ* € X", find C! € X"
satisfying

(32)  ((w+ (1 —w)psq' (Ch))—,vp) 4 (- VCh,vp)+(DVCh, V) = (f,vs), for all v, € X Ty ()

n+1 n
cptt -

(B3) (Wt (1 -wpud (G~

o) + (u- VI o) +H(DV O, Vo) = (f* op),

for all vy, € X(’},Fm Q).

Next, we propose the midpoint method for time discretization in Finite Element Approximation (3.2): Given
Cr e X", find C,’ZH € X" satisfying

cptt—op

(34) ((w+ (1 —wpud (G211

o)+ (u- VO ) +(DVCTT2 W) = (F712 ),

n+1
for all vy, € X(’}F (Q) where Ch H denotes %

In order to 51mphfy computation, we use the refactorization of the midpoint method [11] for time discretiza-
tion. Hence, we get the following full discretization: Given O} € X", find C”H € X" satisfying
Step 1: Backward Euler step at the half-integer time step ¢,, 1 /2

(3.5)
n+1/2  ~p
(@ + (1 —whpeg (/2 G —Cik

G Jon) + (- VO ) H(DVCTT? W) = (F77V2 ),

for all vy, € X(’)l,l“in Q).
Step 2: Forward Euler step at t,1

(3.6)
C;;+1 _ C;Z+1/2

(w+ (L= w)pg () =

Jon) + (u- VO o) H(DV O W) = (f712 ),
for all vy, € X&Fm Q).

Remark 3.1. Step 2 is equivalent to a linear extrapolation Cy, 11 = 2C, 1 1/2 — C,.

Remark 3.2. In [35], the Streamline-Upwinded Petrov-Galerkin (SUPG) was analyzed for the highly

advective flows, instead of Finite Element Approximation (FEM). When § = 0 in [35, Equation (11)], SUPG
and FEM are equivalent. Hence, [35, Theorem 2.1] is applicable to prove the solvability of (3.4) for C}ZH.

4. Time-Dependent Analysis. In this section, before we perform the stability and error analysis for
the time dependent problem, first we construct a continuous extension of the Dirichlet data g inside the
domain €2, C to deal with the non-homogeneous boundary condition.
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4.1. Construction of C. Denote C' as solution of the following elliptic problem with non-homogeneous
mixed boundary conditions:

-V (DVC)+C =0, z €9,

(4.1) C=g, ifv €Ty,
(DVC)-T =0, if 2 € T UTgy.

LEMMA 4.1. For every f € L*(Q) and every g € HY/?(Ty,), there exists a unique solution C € I-:TQ(Q)
of (4.1) under the compatibility condition DV g - W =0ifzel_NT,. The energy estimates for C and
VC are as follows,

(12 G < 4B ol
A 2(KB1)?
(4.3 rvore < 20 g,

Remark 4.2. The energy bound given in [22, Theorem 2.3.3.6] is
1C rr20) < Kllgll iz e,y

for all C' € H?(2) and some constant K.

Proof. The existence and uniqueness proof for the more general case can be found in [22, Theorem
2.4.2.7]. For energy bounds, we take the dot product with C, then apply Green’s Theorem to the diffusive
term to obtain

(V- (DVE), ) = —/

(DVC) -7 C ds+ (DVC, V() = —/ (DVC)-7gds+ (DVC,VC)
r

Cin

where we used the boundary condition (DVC)-n =0, 2 € T',, Uy and C(z) = g(x), = € Ty,. Hence, we
get the following variational formulation,

IC|I? + (DVC, V() :/ (DVC) - Ty ds.
Tin
Let A be the minimum eigenvalue of D.
(DVC, V() = (DY?vC,DY*V(C) = |DYV2VC|? > A\|VC>.
Hence, we get,
IC1?+ AIVEIP < [ (DVE)-Ttg ds,
Tin
<|IDVC - 7| 20y |9 22010
< BIVE T L2r,)

g”LZ(Fm)'
By using the trace theorem [10, p. 316], we get
(4.4) ICI* + MV EIP < KBICl a2 lgllce (ra,)-
We use the following equivalence of norms [10, p. 271],

1Cll20) < K(IC] + 119 - (DVC) ).
By using Young and Cauchy-Schwarz inequalities (4.4) becomes,

1. - ~

SICI +AIVCI? < 2(KB1)? 9l 72r,)-

Hence we get the bounds (4.2) and (4.3). |



LEMMA 4.3. Let the domain 2 be convex polyhedral. Given g" € X{lm, there exists a C" € X" such that
Chlr— = g" and |C*|| g1 () < Kllg" | grrr2r—)-

Proof. In the case when {2 is two-dimensional, we follow the similar technique in [23] to prove it. Under
the compatibility condition DVgh = 0, whenz e I';\y N Ty, let C € Hl(Q) be the solution of

—-V.-(DVC)+C =0, z€9Q,
(4.5) C =g", when z € I'y,,
(DVC) -7 =0, if 2 € T, U Loy

Since X" is assumed to be a continuous finite element subspace, we see that ¢g” is continuous and piecewise
smooth along the boundary I'_, so that ¢" € H1/2+5(Fin) for 0 < e < % Thus, by elliptic regularity, we
derive that C' € H'*(Q) and ||C]|14. < Kllg"l1/24¢ 1, for 0 < e< 1. Let Ch :=T1,,C be the X "-interpolant
of C' so that C:h’h*in = g". Then, we have the estimates ||C' — I1,C||; < Kh¢||C||14c which can be proven as
in, e.g., [19]. Thus, we get the desired result

ICH]|y = I, Clly < [|€ = T, O + I,
< K(h)|Cll1- + 1CIh),
< K(h6||th1/2+e,F;n + ||9h|\1/27rn,)7
< K||9hH1/2,rm-

where in the last step we used an inverse assumption on X{ljn: there exists a constant K, independent of h,
p" such that
" ls0- < KB Ip"ler,,, Wp" € Xp,, 0<t<s <1,

Since the usual interpolant such as the one used in two-dimensional case, is not defined in three dimensions
for H"()-functions, r < 2, we use Scott-Zhang interpolant [16] when Q is three-dimensional. Scott-Zhang
interpolant is well-defined for any function in H'(Q) [30]. d

Next, to have a full insight of the analysis, we start with the simplest case of constant adsorption. Unlike
previous work, in [34] we dropped the assumption “C/(z, t) is nondecreasing in time at every z” and considered
non-homogeneous boundary condition at inflow boundary.

4.2. Constant Isotherm. In this subsection, we state and prove a priori stability and a priori error
estimates for the case of constant adsorption. In this case of adsorption, ¢(C) = K with K > 0. Since ¢(C)
is constant, it implies % = 0 and hence the variational formulation given in (3.1) simplifies to the following:
Find C € H'(Q) such that C| =g and :

in

oC

(4.6) (wa,v) + (u-VC,v) + (DVC, Vo) = (f,v), for all ve Hjp ().

The semi-discrete in space Finite Element formulation with constant adsorption is as follows: Find C}, € X,
such that C, = gp and :
OCh,

,op) + (W VCq,vp) + (DVCy, Vo) = (f,u1), for all v, € X{p ().
By using Midpoint time discretization, we get fully discrete approximation: Given CJ € X", find C’,’Z’H e Xh
satisfying
(4.8)
G —C Ve, DVCIHTY2 W) = (f7Y2,0), for all vy € X)p, (2
(@ ) + (- VO ) (DG, W) = (17412 ), for all vn € Xiir, (@),
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For the analysis, we recall the refactorization of midpoint method [11] for time discretization to get the
following full discretization: Given C' € X", find C’;LLH € X" satisfying

Step 1: Backward Euler step at the half-integer time step ¢,, 41,2

(4.9)

cptt? _op

(w AL Jon) 4 (u- VCI2 ) (DVCTY? W) = (F7HY2, ), for all v, € Xlr (9).
Step 2: Forward Euler step at t,1
(4.10)
C’;?—H — C'Z+1/2 n+1/2 n+1/2 n41/2 A
(UJTQ’U}I) + (u . VCh ,vh)Jr(DVCh ,Vvh) = (f ,’Uh), for all vy, € XO,F;,,(Q)-

Next theorem gives a stability bound in a sense that the solution is bounded in space.

THEOREM 4.4. Assume that (F1)-(F6) are satisfied and the variational formulation with constant ad-
sorption given by (4.6) has a solution C € L*(0,T,L?(Q)) N L?(0,T, H () with f € L*(0,T; L*(Q)). Let
C be the continuous extension of the Dirichlet data g inside the domain Q and satisfies (/.1). The bounds
on ||C||2 and |VC||? are given in (4.2) and (4.3) respectively. Then we get the following stability bound:

el +2 [ Ivemie ar+ 2 //

4 K
A ﬂl /HVC‘H2 dr—f// )dsdr + 3| Co? + > PF/ 112 dr.

Proof. Let C(x) € H'(Q) such that C'

(u- 7)dsdr < / ||uH°°||CH2d + 8]0

=g Takev=C-C¢ Hj p, (). Then (4.7) yields to

in

(w % C—C)+(u-vCO,C—0)+ (DVC,V(C—C)) — (f,C - O).
Thus, we get,
oC oC 4 . A .
(4.11) (wa— C)+ (u-VC,C)+ (DVC,V(C) = (wa, C)+ (u-VC,C)+ (DVC,VC)+ (f,C - C).
We rewrite the first term in (4.11),
aC e 2

By using divergence theorem and boundary conditions, we get

1 1
(4.13) (u-VC,0) = f(/ ((9)?)(u- ﬁ)ds) + 7(/ (C)?)(u- ﬁ)ds).

2\, 2\ Jrou
Let A be the minimum eigenvalue of D. Then we get,
(4.14) (DVC,VC) = (DY?*vC,DY?vC) = |DY?*VvC|? > \|VC)>.

In the right-hand side terms, we get following estimates,

A ul|% -
(- VC.0) < - VONICI < g lu- Vel + =2
Then by using boundedness of u, we get
R by 2
(4.15) (u-VC,C0) < 1||VC||2+%||CH2.
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Next,

. . . A B2 .
(4.16) (DVC,VC) < | Dl[IVC[IVC| < V[V < ZIIVCII2 + fHVCIIZ-
KPF 2 2 )‘ A2
(4.17) (f,C=C) < |Ifllllc = ¢ < 5 I fIIVCII + 7 IIvel.
Next,
aC . o A aC o .
(4.18) (wE,C’) at(C’ ) fw(C,E) wa(C, ).

Combining (4.12)-(4.18), we get
A 2 1 2 - ||u||oo 2
— (= _ — . <
5 (S1C1) + 31vei+3 [ (@ Tyds < =€)
A

(34 Eyiver - 3( [ (@hwe i)+ LR p s 0 2.0

Next, integrating both sides from 0 to ¢, we obtain

Sjewi+ 3 [vewitay [([ (o was) a

out

Jlafl5 A B A w
aiw < [(Mrjep s (G4 5 [vepas Sicor?

- iA (/ ((9)2)(11‘%))6&9) dr — w(C(0), Cv 2K12:~F/ ||f||2 dr + w(C ()70)

in

Here,
w(C(1),C) <w|CHIINC] < %IIC(t)II2 +w||C|.
—w(C(0),C) < w|(C(0),0)] < wllCO)IC] < %IIC(O)II2 +w|C|?

Hence (4.19) becomes

“lomi? + /ch 2 dr + - / / T)ds) dr

/ lu IIOOHCHQd o 51 /chsz _/Ot(/F (9)%) (- 7)ds) dr+ = CO)|? +w|

2K? >
N %/ 112 dr + ZIIO(t)II2 +w||C)? + §IIC(0)H2~
0

Simplifying the above inequality and using C(0) = Cy, we get the claimed result.
Remark 4.5. Putting (4.12), (4.13) and (4.18) into (4.11), we get,

o 28tHC||2 (/ (02)(11-#)(13)+(DVC,VC):—(/ (¢*)(u- 7)ds) +(f,C = C)
4.20 Tout r

w%(C, )+ (u-vC,0) + (DVC,VO).

If f=0and C =0 in (4.20), we get the balance of mass as follows

(4.21) . 6‘t||CH2 (/F (C*)(u-)ds) + (DVC,VC) = —(/Fm(gQ)(u-ﬁ)ds).

out

in

Recall that u- 7 > 0 on T'ous and u - W <0 on Iy



Next theorem gives a priori error estimate for the case of constant adsorption and semi discrete in space
where we will use the notation

8K{pllull + 85%)[(2 8K} pw? K? 4ﬁ}

K? = max {(2+ 2 TR )

THEOREM 4.6. Assume that (F1)-(F6) are satisfied and the variational formulation with constant ad-
sorption given by (4.6) has an exact solution C € H(0,T, H**1(Q)) and Cj, solves the semi-discrete in
space Finite Element formulation with constant adsorption given by (4.7). Then for 1 < r < k+ 1 there
exists a positive constant K independent of h such that:

_ r1]0C
IC = Chllz2 om0 (@) < K(” 1HC||L2(O,T;H7'(Q)) +h IHE‘

Cr —C)(0)])-
prtoimaniayy T 1(Cn = Cr)O)])

Proof. The weak formulation of continuous and discrete problems are given by (4.6) and (4.7), respec-

tively, where C' =g and C}, = gp, are required.

in in

First we let v = vp, € X&Fm C Hyp,, (Q) in (4.6) and then subtract (4.7) from (4.6) to get

o(C — Cy)

(4.22) (W=

,’Uh) + (ll . V(C — Ch)ﬂ)h) + (DV(C — Ch), Vvh) =0, for all vy, € Xél-,Fin'

Then for any C’h(x) € X, such that C), = gp, we have that

in

(4.23) (WW, Uh) + (11 . V(Ch — C’h>,vh) + (DV (Ch — C‘h),Vvh)
= (ww,vh) + (U. . V(C — éh),’l)h> + (DV(C — C’h),Vvh), Yy, € X(?,Fm'

We choose v, = Cy, — C), € X(})I,I‘ir.' Then, we get

az) @R 66k (0 - 6).Ch— G+ (D9 (G- 64). V(G- )
- (wa(ca_téh),ch —Cy) + (u- v(c - éh),ch —Cp) + (Dv(c - éh),v(ch - Oh)).

Let ¢p, = Cp, — C’h and n=C — C’h. Notice that both C}, and C’h are equal to g, on I'y,. Hence ¢y,
Hence, (4.24) becomes

@35) @ 6+ (u- Vonon) + (D6, Von) = (02 0n) + (- n.dn) + (D, V).

=0.

in

We obtain lower bounds for the terms on the left and upper bounds for the term in the right of (4.25) by
using the assumptions and Young’s and Cauchy-Schwarz inequalities. We rewrite the first term in (4.25),

8¢)h 6¢h w 8

En ,On) = w(ﬁ’%) = 5&”%“2-

(4.26) (w

Next,

(- V. tn) = 5 [ (@) 7)is).

( / (@) s + [

in Fout

N = N

((6n)?)(u - 7)ds + /

I'n

((6n)*)(u-T)ds ).

10



We know that ¢y, =0, on gy, u-7 >0 and on u-7 =0.

in

Hence, we get,

1
(4.27) (w- Vo) =5 ( [ (@) T)ds) 20
Pout
Following the same steps in Theorem 4.4, we get the following bounds
(4.28) (DVén, Von) > N[ Ven|®.
Kbp 12 2, A 2
(4.29) (u- Vi, ¢n) < ==l lnlly + 7 1V enll”.
BTy 2 A 2
(4.30) (DVn, Vén) < ==lnlli + 711V enll®.
Next,
K2 ,.w?0n K% ,.w?0n
1 wghon <o 3o < 3 P< S qiver
@3) w2 o) <o flonl < St + gl < 20"+ 21Vl
Combining (4.26)-(4.31) and integrating from 0 to T', we get
(4.32)
A T 2K 2 |lul?, + 263 2K pw
T2 4+ 2 2 gy < PF 1 / “Appw / 2
Jon@)E + 55 [ 19l ar < (PEEEEEERY [ gy an s 2502 0120 4 o0

Hence, (4.32) implies

T 4K2 L ||la||?, + 4% 4K?2 w? 2w
sy [ 1ol s (EEAME AR [Ty gy B [T O0T g 2 0

A2 A2
By using the Lemma 2.1, we get

T 4K2 . ||lul|2, + 463 4K3 0 2w
2 gy~ PF 1 PF aw 2
s [t s (R [Ty L1 as Znon

Triangle inequality gives

1€ = Chlly < lInlly + [|énll1-
Thus, we get

T T T
(4.35) / 1C— Cull? d < 2 / Il dt + 2 / I6n? dt.
0 0 0

Now using inequality (4.34) in (4.35) yields

T 2
8K, ||ul2, + 8 8K puw? dw
[ 10— culi ar s (24 IR OBy [Ty gy BB RO g By
. A\ at X\

Since Cj, is arbitrary, we have the following inequality

T 2 2 2 T
8K ul|s, +8 . A
/ € -l ar < (2.4 el 51)/ nf O Gy? dt
0 0 _Ch€Xn
Chlr;, =9n

8SK%.w? [T d(C —Cn) 2 4w )
B /O int | X a4 2 o))

Cpexy,
Crlry, =9h

11



Let g5 be the interpolant of g in X{lin. Then by using Lemma 2.2, for 1 <r < k+ 1 we get,

T 2 2 T
K +
/ |C = Cp|} dt < ( : PFHI;\HQ 85 )K12h2rf2/ IC12 dt
0

(4.36)

+8K1%Fw2K2h” ’ / H H dt+7w||¢h(0)||2~

Let

8K2 w? 4w
2 PF 2
Ki =% Kl’T}‘

8K pllull%, + 8ﬁ1)

K2:max{(2+ 2

Thus (4.36) implies

- o] OC
IC = ChllZe (0,150 (o) < K° (hgr 2NCNZ2 0,730 () + 12 QHE

+ llgn(0)]1?)-

L2(0,T;HT(Q))

Consequently, we prove the claim. O

Next, we find the energy bound for the discrete version of adsorption equation (1.1) for constant isotherm
using the midpoint method for the time discretization. At a continuous level, we proved C' > 0 and bounded
by initial and boundary conditions. But at a discrete level, the Maximum Principle is very hard to implement,
usually timestep has to be O(h?) [32].

THEOREM 4.7. Suppose the assumptions (F1)-F(7) are satisfied so that the fully discrete formulation
given by (4.8) has a smooth solution {CP}IN_o € L?(0,T; H(2)). Then for all N >0,

N
n A n
IO 4 AtZ(/ (G2 e 7)ds) + = A [V C2R
n=0

out

ANAt|ul|? +8 w5 o  2NAL ) ANALSF + NALN?
< — —u-
< SIS LR G + ([ () us Tyds) +
8K?%
wA

IVCnl?

in

N
ALY YRR BIICRI.

n=0

+

Proof. Let Cy(x) € X" such that Cp,| = gn. Take v, = C’Z’H/Q —Cp e X&Fm(Q). Then (4.9) yields

in

to

n " At n n At n n
@G = O, O ) + S O O (v et vt

At . . . A RSN . .
7(fn-‘rl/Z’C¢h+1/2 _ Ch) + (w(ch+1/2 _ Ch)7ch) + 7(u . Vch+1/2’0h) + 7(DVC,L+1/2,VC';L).

Using polarization identity in first term, we get,
(4.37)
At

At
GUCE2IP = SUCRIP + SO = CriP) + T (w VORG24 S DV 2 vt )
A " . " LAt . . At " .
— ?t(fn+l/270h+1/2 _ Ch) + (W(Ch+1/2 _ C’?),Ch) + 7(11 . Vch+1/2,0h) + T(Dvch+1/27VCh).
Next, (4.10) yields to

At n At n n
(@G = ), a4+ o VO, O+ DV T v et

At

At n -~ n 2~ At n ~ n ~
=S 2O G (WO = TG+ (e VO G+ (DY G G,

12



Using polarization identity first term, we get

(4.38)
W ntl 2 n+1/2)2 nt1 nt1/2,2, , At n41/2 ~mt1j2y At n+1/2 nt1/2
—(||C —||C —||C -C 4+ —(u-VC ,C + —(DVC ,VC
5 Ul h h h 5 h h 5 h h
At n 5 n 5 At " 5 At n 5
= S (RO = Go) (@G = O, )+ (e VO Cr) + T (DV T2 VE).

Adding (4.37) and (4.38), we get

w n n n+1/2 n n n+1/2 n+1/2 n+1/2
SUCETP = ICRIP + G2 = I — Gt = O Y2 12) + At(u - w2, G2

(4.39) + AU DO Oty = AtV O G + (w(Cpt = O, C)
+ At(u- VO G + AUDVCIT? W E).

Using (4.9) and (4.10), we get,
1 na1/2 ni2 Ly mt n+1/2 )2
NG =GRl = SlICy™ =G I =0
Consequently we have,

(4.40)
SUCTP = ICRIP) + At(u - VG2, 002 4 A(DV O 2, v Gt

= AL(fPH2,C0 2 C) 4 (w(Ct = ), Cn) + At(u- VCITY2 ) + AH(DVCT V).

Doing the similar analysis as in continuous case, we get,

n n 1 1 .
@y e S e mas) < L ( [ aent e as).
Tin Tout
Next,
(4.42) (DVCIT2 wert 2y > A\ ver 22,

The bounded term on the right side using similar techniques as in continuous case is shown below:

mn 5 )\ mn 2 5
(1.43) (w- w02, Gy < Apwopt e M g, e
n 5 )\ n 2 ~
(4.44) (DVOIH2 WEy) < 3 IVOrH 2 4 PL vy 2
n n 5 2K2 n )\ n )\ ~
(4.45) (F2, 00 = Gy < PRSP+ IV O+ VG
Putting (4.41)-(4.45) into (4.40), we get,
Wi m Wi m At nt1/2 AtA nt1/2
Slotir=Fio+ 5 ([ (e was) + SRvCE R
ul|2 At - At Atp?
(1.46) < BEShe e - S [ (@ has) + SR
2K: AL . AN 4 n A
+ SR 22+ SRV C R+ (@G = O, ).

13



Next, we sum over n = 0 to n = N to get

w At At &
n+1/2 n+1/2
Sl 2 = SlloR) + 72 (/ (A e ads) + =5 3 Ve

n=0 Lout n=0
Nlu|®. At NAt NAtB? _ .
(4.47) < SR - = ( / ((gn)*)(w- 7)ds) + ==LV Cy?
A 2 \Jr. )
2K% At NAt)\ 5
+ ZREEA S ey N 96, 12 4 (ot — ), 6.
n=0
Here,
A w w A
(W(CH =), Ch) < ZIIC;]LVHII2 + ZIIC;?II2 + 20| C |-
After simplification, we get the desired result. ]

Remark 4.8. Putting (4.41) into (4.40), we get,

w n At n n mn
SICE = SIeRI+ ([ (G )ds) + MDY, wO )

Fout

(4.48) _ _ﬁ(/ ((gh)2)(u . ﬁ)ds) + At(f"“”ﬂﬁ“” _ C’h)
I

in

+ (W(Ctt —ap), C) + At(u- VCT2 C) + AHDV OV W E).

If f=0and C, =0 in (4.48), we get the balance of mass as follows

w n At n n n
SUCIE =Gk + G ([ (PP 7)ds) + MDY, vy )

=5 ([ (i)

in

(4.49)

Recall that u- 7 > 0 on T'out and u - 7 < 0on Ty

Next theorem gives a priori error estimate for the case of constant adsorption in fully discrete case where
we will use the notation

K2 :max{(2+ 8K123F||l;\”2c2>o+85%>K2 8K} pw? K2 8K\TK}p 27‘”}

222 » A2 A

THEOREM 4.9. Suppose the assumptions (F1)-F(7) are satisfied so that the fully discrete formulation
given by (4.8) has a smooth solution {CPIN_, € L2(0,T; H'(Q)) and the variational formulation with con-
stant adsorption given by (4.6) has an ezact solution C € H*(0,T, H**1(Q)). Let ¢7" = C), — Cp. Then for
1<r<k+1and N > 0 there exists a positive constant K such that:

N1
At Z [C(tns1/2) = Cultnsrs2)llf < K2 (h% At Z IC(tngry2)lI7 + P77~ 2H

n=0

L2(0,T;H"(2))

+ (A Cutel o 7., + 601).
Proof. Let the approximate solution at time t"*/2 be C’nﬂ/2
get, the fully discrete variational formulation is as follows:

Given Cp € X", find €7+ € X" such that 0,?+1’F — g5, and satisfying,

(4.50) in
Cpt -Gy n+1/2 n+1/2
(WhTth’vh) +(u- V0, ,un)+(DVCy, , Vo) = (fn+1/2 ), for all vy € Xo r, (Q).

in

. Then by using midpoint method, we

14



Let Cy represent . We write the following variational formulation for the exact solution C.
(4.51)
wc(tn—H) — C(tn)

( At ,U)+(U'V0(tn+1/2)71})+(DVC’(tn+1/2),V1}) = (fn+1/27,0)_|_(rn7,u)7 Vove H&,Fin(Q)'

where time discretization error, r" C(t"“) Oltn) Ct(t"“);ct(t”)
Let " = C(t,) —CJ and v = vy, € X T C H0 r,, (©2) in (4.51) and then subtract (4.50) from (4.51) to get

in

n+l _ _n
(4.52) (w%,vh) + (u- Vet 2 4) + (DVe Y2 Vo) = (7, vp), for all vy, € X{r, ().
Then for any C’h(x) € X, such that C), = gy, we write that e” = C(t,,) — C) = C(ty,) — Cn+C— cy.
Let ¢} = C, — Cp and " = Ch, — C(t,). Notice that both C}' and CA’,? are equal to g, on I';,. Hence
I = 0. We choose vj, = ZH/Q € X&Fin. Then (4.52) becomes

in

n+l
( ¢ N (rbh’ Z+1/2) ( V¢n+1/27 Z+1/2) (Dv¢n+1/2 V¢n+1/2)

n+1 n
n -n n+1/2 n n+1/2 n n+1/2 n n+1/2
T o e O G 4 (DO g ) 4 ().
We obtain lower bounds for the terms on the left and upper bounds for the term in the right of (4.53) by
using the assumptions and Young’s and Cauchy-Schwarz inequalities. We rewrite the first term in (4.53),

= (w

¢Z+1 — Ok n+1/2 n+12 n2
(4.53) W= )= (||¢ 17 = llonl).
Following the same steps in Theorem 4.6, we get the following bounds
(4.54) (u- Vg2 gty >0,
(4.55) CAZARE AR EP B
" n 2K ulls . n
(4.50) (- w2 g2 < KR e Xyggrenrzge
n n 208 | n
(4.57) (DY 12,960 < T 4 20
Next,
n-+1 n tnt1
n —nont1/2y W n+1/2
W = (g [ ),
2KPFw /t"+1 n+1/2)2
d .
< ZEEE() 7 mlar)? + 5196

n

Hence, after applying Cauchy-Schwarz inequality we get,

n+1 n 2 2 tnt1
n -1 n+1/2 2Kppw 2 n+1/22
(4.58) (w 2y < 2Kpre” / Imldr) + S92,
At h ez | . (lfdr) +
Next,
n n 2K2 n
(4.59) (o) < ZIwgrt P 4 ZEEE 2

15



Combining (4.53)-(4.59), we get

o (I 1P~ 9RI) + S IV 622

< 2K123F||u||go”nn+1/2”% + 2ﬁ1”77n+1/2”% + 2]:(Izi'FW2 (/thrl H77 HQdT) + 2K123F ||7'nH2
= A A ML N, ¢ A '

(4.60)

Multiplying (4.60) by QTM and summing over n =0 to n = N, we get

N+1

AK2 o lu)|2 + 482\ T
n+1/2 oo n
o 2 + Z Ao < (R T S Ay
(4.61) e e "
+ 2B [ o B 3 Ao+ I

To bound 7", we use Taylor expansion about t"*1/2. Hence,

N+1 N+1

STALP < Ky Y AHAL || Cratl < (0, T; L7))?,

n=0 n=0

< K\ NAUAL || Cope| o (0,7:105)
< KlT(At2||Cttt||Loo(0,T;L°°))2~
Therefore, (4.61) implies

N+1 2 2 2 N+1
A n+1/2 AKpp|lull5 + 48 n
IR0+ 5 30 AV < (SRS 5 Al
AK2 w [T 4K TK%
+ 222 [ Pt PR (AR ol 02 + I
o WA
Hence, we can write,
N1 ) ) 9 N+1
., 1K il
"0 n=0

4K2 w2 4K1TK w
+ %/ el 3t + )\7”‘(AtQHCtttHLw(O,T;Lm))Q + X||¢2||2-

By using the Lemma 2.1, we get

N+1 N+1

Z AdlgH2)2 < <4K123F||u||2 +451> Z A7) 2
n=0

4K? w? 4K\ TK? w
+ B [ P+ BT (Al i) + SIS

Triangle inequality gives

N+1 N+1
n n+1/2 n
Z Atfle" /2|2 < Z 28t ([lop 212 + " H213).

Thus, we get
N+1 9 2 N+1
n 8K} pul%, + 867 n
Z Atllem /2|2 < ( PF > 1) Z At /2|12
n=0 n=0
SK2 -w? SK|TK?2 2w
+ SB[ it + ST (APl + NI

16



Since C}, is arbitrary, we have the following inequality

N+1 2 2 N+1
K .
S At < (24 8 pFlluH +851) Z At inf CmHY2— Gy )3
ChEXh
= Chlr- " =9h
8K2, w? [T 9 C ch 8K TK?

+ Pg _inf H ( H dt + —-LF (AtQHCtttHLOC(OTLx)) +7”¢h”2'

X2 Jy  onexa 22

Crlry, =9h

Let g;, be the interpolant of g in Xf‘m. Then by using Lemma 2.2, for 1 <r < k+ 1 we get,

N+1

" 8B pl[ul% +883Y 2120a N o p1 o
Z Atlem /2|2 < ( PF % 1>K22h2 2 Z At|CmH1/2)2
(4.62) n=0 n=0
8K % jw? Tyoc 2, 8K \TK? 2w
+ B g2 [ T2 e+ SR (AR Curlumiomia)* + ISP
0
et K2 2 K2 K\ TK?
8 8 8 8 2
K2 — max{(Q—i— PFHU)\HQOC +85% )Kzz’ ifw K2, 1)\2 PF ;J}
Thus (4.62) implies the claim. O

4.3. Affine Isotherm. In the case of affine adsorption, ¢(C) = K; + K>C with K7, Ky > 0. It implies
=K>% Let @ = (w+ (1 — w)psK>). Hence, the variational formulation given in (3.1) simplifies to the

followmg. Flnd C € H*(Q) such that C| =g and:
e )
(4.63) (wa,v) + (u-VC,v) + (DVC,Vv) = (f,v), for all ve Hyp ().

The semi-discrete in space Finite Element formulation with affine adsorption is as follows: Find C}, € X,

such that Ch‘ = g and

oCh
ot
For the analysis, we recall the refactorization of midpoint method [11] for time discretization, we get the

following full discretization: Given C' € X", find C}?Jrl € X" satisfying

Step 1: Backward Euler step at the half-integer time step ¢, 1 /2

(4.64) ((IJ ,Uh) + (u . VC}“U}L) + (DVCh, Vvh) = (f, Uh) for all v, € XO FH,(Q)

(4.65)
_ C’Z+1/2 - Cp n+1/2 n+1/2 S N
(WT/Qv”h) + (u- VO, 0n)+(DVC,T 7, V) = (f ,vp), for all vy, € Xgp, (Q).
Step 2: Forward Euler step at t,1
(4.66)
o+l _ ontl/? » o
(@WWH + (u-VOrT / o) +H(DVORT / V) = (f*12 ), for all vy, € X(})L,Fin(Q)~

Remark 4.10. All the theorems proved for the constant adsorption is true for the affine adsorption where
w is replaced by @.

4.4. Nonlinear, Explicit Isotherm. We consider the nonlinear isotherm with an explicit represen-
tation, for example, Langmuir’s isotherm [8,31] is as follows:
qma:pKeqC

C) = Lmazted
4(C) 1+ K.,C’
17



where K., is Langmuir equilibrium constant, ¢, is the maximum binding capacity of the porous medium.
Recall that for the case of nonlinear isotherm with explicit representation,

8q 0q 0C (C)8£
ot ac ot T\

We consider the variational formulation given in (3.1). The semi-discrete in space formulation is given in
(3.2) and the fully discrete formulation is given in the subsection 3.2. Next, we show the stability bound for
this isotherm. Unlike previous work, in [34] we dropped the assumption “C(x,t) is nondecreasing in time at
every x” and considered non-homogeneous boundary condition at inflow boundary.

THEOREM 4.11. Assume that (F1)-(F6) are satisfied and the variational formulation given by (3.1) has a
solution C € L>(0,T, L*(Q))NL*(0, T, H' () with f € L*(0,T; L*(Q)). Let C be the continuous extension
of the Dirichlet data g inside the domain Q and satisfies (4.1). The bounds on ||C||* and |V C||? are given

n (4.2) and (4.3) respectively. Let the antiderivative be A(C) = foc sq'(s)ds. Then we get the following
stability bound:

coP+ 2 [ a-wpacoae 2 [vempas [([ @) a

out

/ ”“”O@H(;n?d +( 461 / Ive|? dr ‘/ot</p ((9)%)(u-70)ds) dr

in

2 w CW1202K2) .
r3jcor+ A2 [ o +16( PP e+ 2 [ 0 -wppaconas

Proof. Let C(z) € HY(Q) such that C

=g Takev=C—-Ce Hjp, (€). Then (3.1) yields to

in

(w+(1- w)psq’(C))%—f,C— )+ (u-vC,C—0) + (Dvc,v(o - é)) —(f,C-0O).
Thus, we get,
L
(wW+ (1 -w)psd'(C)—=,C)+ (u-VC,C)+ (DVC,VC)
(4.67) ot

(Wt (1= )pd (€D E) 4 (- VC,E) + (DVC,VE) + (f,C - C).

ot

Let the antiderivative be

We rewrite the first term in (4.67),

(4.68)
aC oC 0

((w+ (1= @) 5.0) = [+ 0 -wpenean =5 [ (Siop+a-wpacan o

Next using the same steps in Theorem (4.4), we get the following bounds:

(4.69) (u-VC,C) = %(/F ((g)Q)(u-ﬁ)ds) + %(/F ((0)2)(u-ﬁ)ds).
(4.70) (DVC,VC) > \|VC|>.
(4.71) (u-vC,0) < 5||VC||2 + %HOHQ

! A ‘

18



N A 2 ~
(4.72) (DVC, V() < Z||VC||2 + %nvcn?

A~ 2 A~
(1.73) (5,0~ &) < 2B 2 4 2w + 1wl
Next,
oC 0 A 0
(4.74) ((w+ (1@t (@) X €)= w2 (C.0) + (1~ w)ps 2 (4(C),

Combining (4.68)-(4.74), we get

1

2 R 2 ] R
(G NIV - 5( [ o itys) + R w06+ (1

Let C(0) = Cy and A(Cy) = Ap. Integrating both sides from 0 to ¢, we obtain
(4.75)

[ (ger+a- w)psA<c<t>>)cm 5 [veoira s [ weri- ) a

).

0 W 9 A 2 2 [all | A
5 | (g1 a-wpace aos J1vci+ 5 [ (@it < ey

B
w)psé(q(C),

0).

/ D% zar + (2 4 25 / v — L /Ot( [ - s) ar+ 2Kbr /Otllfllzdr

+a(C(0) = Cou€) + (1= )pu(a(Cl) — alC0). O+ [ (1608 + (1= w)puso Jac

Next,

w(C(1),C) < wllC@IINC] < %IIC(@H2 + 2w C%.

~w(Co, €) < wl(Co, O)| < w|GolllIC < %II(JoII2 +2w|C1%.

By using Cauchy-Schwarz and Young’s inequalities, we get,

4(1 —w)?p?K?
w

(1 —w)ps(a(C(t) — q(Cy), C) <

Hence after simplification, we prove the claim.

Remark 4.12. For the case of Langmuir’s isotherm,

1
A(C(t)) =In(1+ C) + —— + constant.

1+C
Remark 4.13. Putting (4.68) and (4.69) into (4.67), we get,
(4.76)
9 <“’||C||2 +(1- w)psA(O(t)))dQ + (/ (C*)(u- ﬁ)ds) +(DVC,VC) = -
ot o \ 2 Pout

+(f,C =) (w4 (1 —w)psd' (C ))aaf C)++(u-vC,C)+ (DVC, V()

If f=0and C =0 in (4.76), we get the balance of mass as follows
(4.77)
0

ot

out

Recall that u- 7 > 0 on T'ous and u - W <0 on Iy
19
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5. Numerical Test. In this section, we perform some numerical tests to show that the midpoint
method described in Subsection 3.2 gives second order convergence rate for the considered PDE model for
the constant, affine and nonlinear, explicit adsorptions. For checking the order of convergence, we assume
the following: u = (1,1), D = I, Q2 = [0,1] x [0,1], w = 0.5, X" = the space of continuous piecewise affine
functions, exact solution is C(z,y,t) = t*(23 — 32% + 1) cos (Zy). The body force f, initial condition Cj,
and boundary conditions are determined by the true solution. The norms used in the table are defined as
follows,

T 1/2
[Clloc,0 :=ess sup [|C(-,t)]|z2() and [[Clo,0 := </ ICC D720y dt)
0<t<T 0

Next, for the plot of concentration profile in each case, we consider the following: f =0, g =1, T = 3.0,
h=1/128,dt =1/128, u = (0,2z(z —2)), D = I, Q = [0,2] X [0,10], w = 0.5, X" = the space of continuous
piecewise affine functions.

5.1. Tests for the case of constant isotherm. In this subsection, we first check the convergence
rate for the case of constant isotherm in the first test and in the second test we plot the concentration profile.
We also show the comparison of total mass after each test.

(h,At) — (2) |Gt (s (e | (G
[C = Chllso.0 0.0871011 | 0.0462486 | 0.0238288 | 0.0120901 | 0.00608901
Rate - 0.91328 | 0.9567 0.97888 0.98955
1C = Chlloo 0.0622419 | 0.0340122 | 0.0179402 | 0.00923882 | 0.00469204
Rate - 0.87183 | 0.92286 | 0.95742 0.97749
WC —VChilloo | 0.100308 | 0.0548173 | 0.0289367 | 0.0149649 | 0.00773043
Rate - 087173 | 0.92173 | 0.95132 0.95296
[C = Chlloa 0.11805 | 0.0645117 | 0.0340468 | 0.017587 | 0.00904294
Rate - 0.87177 | 0.92204 | 0.95301 0.95965

Table 5.1: Temporal convergence rates for the BE approximation with a constant adsorption model to the
non steady-state problem.

(h,At) — (Za:3) | (gs 1) (25 5) (25> 76) (25 33)
[C = Chllse.0 0.0465279 | 0.011173 | 0.00269747 | 0.000664032 | 0.000164628
Rate - 2.0581 2.0503 2.0223 2.012
[C=Chrllo.o 0.0385999 | 0.00906892 | 0.00219412 | 0.000539591 | 0.000133763
Rate - 2.0896 2.0473 2.0237 2.0122

[WC —VChrloo | 0.714751 | 0.178008 | 0.0442268 | 0.0110284 | 0.00312606
Rate - 2.0055 2.0089 2.0037 1.8188

[C = Chlloa 0.715792 | 0.178239 | 0.0442812 | 0.0110416 | 0.00312892
Rate - 2.0057 2.009 2.0037 1.8192

Table 5.2: Temporal convergence rates for the midpoint approximation with a constant adsorption model to
the non steady-state problem.
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Fig. 5.1: Constant Isotherm: Temporal rate
that Midpoint is giving order 2 whereas BE is giving order 1.
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Fig. 5.2: Constant Isotherm: Comparison of total mass for exact solution, BE, Midpoint, 7' = 1.0, h = 1/128,
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dt = 1/8. Notice that BE overestimates total mass rather than underestimates.
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Fig. 5.3: Constant isotherm: Plot of concentration while using BE (Left) & Midpoint (Right), f =0, g =1,
T =3.0,h=1/128, dt =1/128, u = (0,2z(x — 2)), D = I.
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Fig. 5.4: Constant isotherm: Comparison of total mass, f =0, g =1, T = 3.0, h = 1/128, dt = 1/128,
u=(0,2z(x—2)), D=1

5.2. Tests for the case of affine isotherm. In this subsection, we first check the convergence rate
for the case of affine isotherm in the first test and in the second test we plot the concentration profile. We
also show the comparison of total mass after each test.
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(h, At) — (o2) | Gomew) | Goes) | (oei1e) | (omesy)
[C = Chllse.0 0.141342 | 0.075632 | 0.039242 | 0.0200057 | 0.0101035
Rate - 0.90212 | 0.9466 0.97199 | 0.98556
[C = Chllo. 0.0954833 | 0.0510779 | 0.0266862 | 0.0136784 | 0.00693
Rate - 0.90255 | 0.93661 | 0.96419 | 0.98097
[VC —VChilloo | 0.154705 | 0.0827994 | 0.0432733 | 0.0222213 | 0.0113464
Rate - 0.90183 | 0.93614 | 0.96153 | 0.96971
[C—Chlloa 0.181798 | 0.0972866 | 0.0508403 | 0.0260938 | 0.0132953
Rate - 0.90202 | 0.93627 | 0.96227 | 0.97279

Table 5.3: Temporal convergence rates for the BE approximation with an affine adsorption model to the non
steady-state problem.

(h,At) — (35:3) | (g 1) (25 5) ) (25 33)
[C = Chllss0 0.0362764 | 0.00901857 | 0.00224664 | 0.000561211 | 0.000140536
Rate - 2.0081 2.0051 2.0012 1.9976

[C = Chlloo 0.0306995 | 0.00722705 | 0.00174822 | 0.000429612 | 0.000106604
Rate - 2.0867 2.0475 2.0248 2.0108

[VC =VChilloo | 0712515 | 0.177229 | 0.0439172 | 0.0108973 | 0.00307773
Rate - 2.0073 2.0128 2.0108 1.824

[C = Chllos 0.713176 | 0.177376 | 0.043952 | 0.0109057 | 0.00307958
Rate - 2.0074 2.0128 2.0108 1.8243

Table 5.4: Temporal convergence rates for the midpoint approximation with an affine adsorption model to
the non steady-state problem.

—e—erort ., = Hc—chl\x'O
error2,

<-- Error -->

wig =llcC ko

=@ crror3, ., =[IV(c-c)lly o
errorzt,v“d=\|c-chHOY1

errortge = Hc-chuxlo

error2BE =”C'ChH0,0

error3z =||V(°'°hmo,o

errordge=|lc-c, Il 4

— -—- order 1

— -— - order2

Il Il

107 10° 10"
<--dt -->

Fig. 5.5: Affine Isotherm: Temporal rate of convergence of BE and Midpoint, T'= 1.0, h = 1/128. Notice
that Midpoint is giving order 2 whereas BE is giving order 1.
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Fig. 5.6: Affine Isotherm: Comparison of total mass for exact solution, BE, Midpoint, T' = 1.0, h = 1/128,
dt = 1/8. Notice that BE overestimates total mass rather than underestimates.
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Fig. 5.7: Affine isotherm: Plot of concentration while using BE (Left) & Midpoint (Right), f =0, g = 1,
T =30, h=1/128, dt = 1/128, u = (0,2z(z — 2)), D = I.
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Fig. 5.8: Affine isotherm: Comparison of total mass, f = 0, g = 1, T = 3.0, h = 1/128, dt = 1/128,
u=(0,2z(x—2)), D=1

5.3. Tests for the case of nonlinear, explicit isotherm. In this subsection, we first check the
convergence rate for the case of nonlinear, explicit isotherm in the first test and in the second test we plot
the concentration profile. We also show the comparison of total mass after each test. In this test problems,
we use Langmuir’s isotherm with ¢p,q; = Keq = 1 where ¢(C) = % = HLC We simplify the problem

formulation to a single (nonlinear) transport equation in one unknown C' using

g _0g00 1 _oc
ot 9C ot  (1+C)2 o’

While using Backward Euler discretization, we compute solutions by lagging the nonlinearity ¢’ (Cﬁ“) as [15]

n+1 n
G =Gk

ot o
/ n h h
Al ~q (Cf)—"—5—"

¢ () N

For the midpoint method, we use the standard (second order) linear extrapolation [24] of C}?H/ * while

n+1/2
an

computing ¢'(C as

ettt -cp
At -

q/(3C;; — Ci?il>cg+l — C;Ll
2 At
25

¢(Cp)



A 5 D [0 0D [t [ ()
[C = Chllso0 0.0636074 | 0.0374917 | 0.0206665 | 0.0108985 | 0.00558454
Rate - 0.76262 | 0.85928 | 0.92316 0.96462
1C = Chlloo 0.0522838 | 0.0310798 | 0.0169125 | 0.00883222 | 0.00451535
Rate - 0.75039 | 0.87789 | 0.93724 0.96794
[VC —VChlloo | 0.0847469 | 0.0502647 | 0.0273473 | 0.0143409 | 0.00746467
Rate - 0.75362 | 0.87815 | 0.93126 0.94199
[C = Chllo 0.0995773 | 0.0590973 | 0.0321544 | 0.0168424 | 0.00872408
Rate - 0.75272 | 0.87808 | 0.93292 0.94902

Table 5.5: Temporal convergence rates for the BE approximation with a Langmuir adsorption model to the
non steady-state problem.

(h,At) — (Z5:3) | (g 1) ) ) (25 33)
[C = Chllss0 0.0357416 | 0.00951864 | 0.00242801 | 0.000611192 | 0.000153313
Rate - 1.0088 1.971 1.9901 1.9951

[C = Chlloo 0.0307399 | 0.00741601 | 0.00181065 | 0.00044712 | 0.000111214
Rate - 2.0514 2.0341 2.0178 2.0073

[NC =VChlloo | 0.744766 | 0.191186 | 0.0475431 | 0.0117471 | 0.00323681
Rate - 1.9618 2.0077 2.0169 1.8507

[C = Chllos 0.7454 0.19133 0.0475776 | 0.0117556 | 0.00323872
Rate - 1.962 2.0077 2.0169 1.8599

Table 5.6: Temporal convergence rates for the midpoint approximation with a Langmuir adsorption model
to the non steady-state problem.
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Fig. 5.9: Langmuir Isotherm: Temporal rate of convergence of BE and Midpoint, "= 1.0, h = 1/128. Notice
that Midpoint is giving order 2 whereas BE is giving order 1.
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Fig. 5.10: Langmuir Isotherm: Comparison of total mass for exact solution, BE, Midpoint, T' = 1.0, h =
1/128, dt = 1/8. Notice that BE overestimates total mass rather than underestimates.
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Fig. 5.11: Langmuir isotherm: Plot of concentration while using BE (Left) & Midpoint (Right), f = 0,
g=1,T=30,h=1/128, dt = 1/128, u = (0,2z(z — 2)), D = I.
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Fig. 5.13: Comparison of total mass for exact solution, Constant adsorption, affine adsorption, Langmuir
adsorption, T'=1.0, h = 1/128, dt = 1/8, u = (1,1).

In the Figure 5.3, Figure 5.7 and Figure 5.11, the concentration front gradually advances through the
height of the membrane over time as it evolves in accordance with the contour of the velocity profile.
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6. Conclusion. We provided a complete stability and error analysis of a simulation tool for modeling
adsorption process for the constant and affine adsorption cases. For the nonlinear, explicit adsorption, we
proved stability analysis for the continuous case. The error analysis for this case is more involved and is
work in progress. But numerically, we showed that midpoint method gives second order convergence for all
adsorption cases. The next most important step in developing this tool is coupling this reactive transport
problem with porous media flow where velocity is approximated.
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