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Abstract. Dahlquist, Liniger and Nevanlinna devised a family of one-leg two-step methods (DLN) that is
second order, A- and G- stable for arbitrary, non-uniform time steps. The DLN method thus has strong potential
for use in adaptive codes, but its adaptive step size selection is little explored. This report develops two approaches
for the efficient local error estimation in the DLN method, and tests their use in a standard adaptivity framework.
Many methods of error estimation are possible; herein we focus on two complementary estimators which involve
minimal extra storage and computations. First we evaluate the local truncation error of the DLN method by Milne’s
device, using the difference between the solution of the DLN method and the solution of a variable-step, explicit,
second-order Adams-Bashforth-like method. Second, we use a recent refactorization of the DLN method, which
eases implementation of DLN in legacy codes, to obtain an effective error estimation at no extra cost. We perform
a number of numerical tests, comparing the two time adaptive DLN algorithms with some standard numerical ODE
packages. Our tests indicate that the adaptive DLN method, with error estimated by Milne’s device, is an efficient
and reliable method, even for stiff and unstable problems.
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1. Introduction. Time step adaptivity (adjusting the time step according to a required
local/global error tolerance) is an essential algorithmic feature in numerical simulations, since
it the improves the long time accuracy, and keeps low the computational cost. To our knowl-
edge, the variable time-stepping DLN method is the only two-step scheme which is nonlin-
early (G-) stable and second order accurate. Hence it is the ideal candidate for time-step
adaptivity for very large systems, where large time step ratios would reduce computational
and space complexity. The adaptivity process, based on a predictor-corrector approach [72],
involves two issues: the (local and/or global) error estimator and the time step controller.

We estimate the local truncation error (LTE) of DLN, using the differentiation defect
[9, 58], in two different ways.

First we approximate it by using Milne’s device [65] via a second order, two-step, ex-
plicit, variable step Adams-Bashforth 2-like method [9, 11, 32, 72]. The second method uses
the difference between the first and second order approximations, embedded in the refactor-
ized DLN method [9, 58], to estimate the error and adapt the time step. We stress that this
second approach, although it gives a pessimistic estimator of the local errors, requires no extra
work or storage, and is intended for applications with severe memory limitations precluding
the first.

For the time step controller, we employ the classical controller in [46], which guarantees
the zero–stability of general one–leg variable step size methods (see e.g., [19,33,45,52,55]),
and enhances algorithmic robustness. Improved controllers have been developed in [75] for
smooth non-uniform grids. We use the standard controller to focus on stiff problems on the
DLN method and its estimators.
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1.1. The DLN Method. To begin, consider the initial value problem

y′(t) = f (t,y(t)), y(0) = y0, (1.1)

where y : [0,∞)→ Rd and f : R×Rd → Rd , and y0 ∈ Rd is a given initial condition. Let
{tn}N

n=0 be the grid on the time interval [0,T ] and kn = tn− tn−1 be the local time step. The
variable step, one parameter DLN family (with δ ∈ [0,1]) reads

α2yn+1 +α1yn +α0yn−1

k̂n
(DLN)

= f
(
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(
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n

δ (1−δ 2)
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)
. (1.2)

The step size variability εn and average step k̂n are

εn = (kn− kn−1)/(kn + kn−1) ∈ (−1,1), k̂n = α2kn−α0kn−1. (1.3)

The coefficients α` are functions of δ , while β
(n)
` are functions of δ , εn, and are constructed

to ensure second order accuracy. When δ = 1 and δ = 0, the DLN method reduces to the
one-step midpoint rule, and the two-step midpoint rule, respectively [58].

We now recall that the (DLN) method can be refactorized as a backward Euler solve,
complemented by a pre- and a post-process step, see e.g. [58] and Figure 3.1. Given previous
two step solutions yn−1, yn and time grid points tn−1, tn, tn+1,

Step 1 (Pre-process): (∆t)BE
n = b(n)k̂n,

tnew
n+1 = β

(n)
2 tn+1 +β

(n)
1 tn +β

(n)
0 tn−1,

yold
n = a(n)1 yn +a(n)0 yn−1,

Step 2 (BE solver):
ynew

n+1− yold
n

(∆t)BE
n

= f
(
tnew
n+1,y

new
n+1
)
,

(on interval [tnew
n+1− (∆t)BE

n , tnew
n+1])

Step 3 (Post-process): yDLN
n+1 = c(n)2 ynew

n+1 + c(n)1 yn + c(n)0 yn−1,
(on interval tnew

n+1, tn+1).

(refactorized DLN)

The coefficients in the DLN refactorization process are

a(n)1 = β
(n)
1 −α1β

(n)
2 /α2, a(n)0 = β

(n)
0 −α0β

(n)
2 /α2, b(n) = β

(n)
2 /α2,

c(n)2 = 1/β
(n)
2 , c(n)1 =−β

(n)
1 /β

(n)
2 , c(n)0 =−β

(n)
0 /β

(n)
2 .

The paper is organized as follows. In Section 2, we evaluate the error estimator of the
DLN method by several explicit second-order schemes. The adaptivity of DLN based on the
first- order solution, provided by the refactorization, is introduced in Section 3. The numerical
tests for the adaptive variable step DLN algorithms are presented in Section 4.
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1.2. Related Work. Many numerical methods have been developed to approximate the
solution of differential equations, e.g., [1, 11, 32, 39, 44–47]. In complex applications it is
however still common to use simple methods, such as the constant time step backward Euler
[16, 71], the midpoint rule [4, 7, 18, 42, 48, 68], the trapezoid rule [34, 49] or, increasingly,
the second-order backward difference (BDF2) method [5, 17, 28, 29, 59, 78, 79, 83]. It is well
known [67] that for linear multistep methods, unfavorable combinations of variable steps
can lead to instability. For example, the variable-step trapezoid rule loses stability for some
specific preset steps [25, 77], and BDF2 is unstable if the step size ratio is relatively large
[12, 13, 30, 31, 40, 41]. Watanabe and Sheikh [82] point out other instabilities that can occur,
even with adaptive algorithms and one-leg k−steps methods.

For non-uniform time grids, most linear multistep methods are unstable, at least for par-
ticular choices of time steps. In 1983, Dahlquist, Liniger and Nevanlinna [25] designed a one
parameter family of one-leg, two step schemes (the (DLN) method) which is G-stable (non-
linearly stable) [20–22] and second order accurate, for variable steps and arbitrary step-size
ratios. Its ability to increase step sizes rapidly, when local solution behavior warrants, is an
attractive feature for large (storage limited) systems. The simple tests of the variable step
DLN method in [6, 8, 52, 55] have confirmed its potential. The work herein is complemented
by further DLN analysis applied to fluids problems in [57, 70], and refactorization to reduce
the cognitive complexity of implementation in [42, 58].

The fact that the whole DLN family is (nonlinearly) G-stable and (linearly) A-stable is
of paramount importance for accurate long-time simulations, and provides optimal computa-
tional options for either dissipative or conservatives physical systems.

One main remaining question, addressed herein, is how to actually estimate accurately
the local errors, and adapt the time step, within the limitations on computational, space and
cognitive complexity in large applications.

In general [72], the error estimators are evaluated either by using the same scheme with
two different time steps, or by combining schemes with different order of accuracies, or by
Milne’s device [65], i.e., using two different schemes with the same order of accuracy but
different error constants. The first method is robust, but has increased computational and
space complexity. We do not address it.

The importance of error estimators and tolerances is widely recognized for stiff and un-
stable problems: ‘the detection of positive eigenvalues is sensitive to the error tolerance and
the details of the Newton iteration’, see e.g., [82]. The refactorization of the DLN method
in [7, 9, 58] indicated that the correct estimator for the local truncation error is the differenti-
ation defect, and it does not involve the interpolation defect [23]. There are several notable
members of the DLN family. The value δ = 2

3 was suggested in [25], to minimize the error
constant and preserve good stability properties. The value δ = 2√

5
in [53], ensures the best

stability at infinity (a property close to L-stability [27]). With δ = 1, the DLN method re-
duces to the midpoint rule, which has the smallest error constant and conserves all quadratic
Hamiltonians.

Time-adaptive numerical simulations of Navier-Stokes equations (NSE) are often mem-
ory bound. Following Shampine and Gordon [32, 72], Gresho, Griffiths, Silvester and Kay
used Milne’s device to estimate the error in the trapezoidal method [35–38, 50], and showed,
how it could be implemented in a memory efficient way. Recently, Bukač and Trenchea [6–8]
designed a time adaptive, strongly-coupled partitioned midpoint method for fluid and struc-
ture interaction, [3, 10, 26, 64], based on the Milne’s device and the AB2 estimator. Using
similar ideas for adaptivity, Park, Salgado and Wise introduced in [69] a fast solver for the
phase field crystal and functionalized Cahn-Hilliard equations. The G-stability analysis of
the DLN method in [58] gave a precise form of its numerical dissipation for incompressible
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flows. Using this DLN adaptivity, based on the minimal dissipation criterion of [14] has been
tested in [57].

2. Error Estimation using Explicit Schemes. Time adaptivity requires a reliable error
estimator. Using the difference between solutions obtained by the DLN method and another
higher order method introduces more time levels to be stored, and also depends on the stability
of the higher order explicit method.

The first estimator. To address these issues, we use Milne’s device [39, 65, 72] to es-
timate the local truncation error at tn+1 by evaluating the difference between the O(∆t2)

DLN-solution yDLN
n+1 and another second-order approximation, yÃB2

n+1, obtained by a variable-
step Adams-Bashforth 2-like method. Let Π1(t) be the polynomial interpolating f (t,y(t))
at nodes {tnewn−1, t

new
n } and values { f (tnewn−1,y

new
n−1)

)
, f (tnewn ,ynewn )}, which by (refactorized DLN)

denote:

f (tnewn−1,y
new
n−1) =

α2yn−1 +α1yn−2 +α0yn−3

α2kn−2−α0kn−3
,

f (tnewn ,ynewn ) =
α2yn +α1yn−1 +α0yn−2

α2kn−1−α0kn−2
.

Then the solution to the variable step AB2-like method is

yÃB2
n+1 = yn +

∫ tn+1

tn
Π1(t)dt (AB2-like)

= yn +
tn+1− tn

2(tnewn − tnewn−1)

(
− f (tnewn−1,y

new
n−1)(tn+1 + tn−2tnewn )

+ f (tnewn ,ynewn )(tn+1 + tn−2tnewn−1)
)

=
(

1+α2
(tn+1− tn)(tn+1 + tn−2tnewn−1)

2(tnewn − tnewn−1)(α2kn−1−α0kn−2)

)
yn

+
(tn+1− tn)

2(tnewn − tnewn−1)

(
α1

(tn+1 + tn−2tnewn−1)

(α2kn−1−α0kn−2)
−α2

(tn+1 + tn−2tnewn )

(α2kn−2−α0kn−3)

)
yn−1

+
(tn+1− tn)

2(tnewn − tnewn−1)

(
α0

(tn+1 + tn−2tnewn−1)

(α2kn−1−α0kn−2)
−α1

(tn+1 + tn−2tnewn )

(α2kn−2−α0kn−3)

)
yn−2

−α0
(tn+1− tn)(tn+1 + tn−2tnewn )

2(tnewn − tnewn−1)(α2kn−2−α0kn−3)
yn−3.

In the particular case when δ = 1, the AB2-like method generalizes the estimator in [9, 69]
for the midpoint method.
Consequently, under the ‘localization assumption’, i.e., back values are exact, see e.g., [39, p.
70], [56, p. 56]), we have the following result.

PROPOSITION 2.1. The local truncation error of the AB2-like method is:

y(tn +1)− yÃB2
n+1 ≈ y′′′(tn)k3

nR
(n), (2.1)

where

R(n) =
1
12

[
2+

3
τn

(
1−β

(n−2)
2

1
τn−1

+β
(n−2)
0

1
τn−2

1
τn−1

)
×

×
(

1−β
(n−1)
2

1
τn

+β
(n−1)
0

1
τn−1

1
τn

)
4



+
3
τn

(
1+

1
τn
−β

(n−2)
2

1
τn−1

1
τn

+β
(n−2)
0

1
τn−2

1
τn−1

1
τn

)
×

×
(
−β

(n−1)
2 +β

(n−1)
0

1
τn−1

)]
.

We recall [58, Proposition 3.1] that the LTE for the variable step DLN method is

y(tn+1)− yDLN
n+1 ≈−G(n)y′′′(tn)k3

n, (2.2)

where

G(n) =
(1

2
− α0

2α2

1− εn

1+ εn

)(
β
(n)
2 −β

(n)
0

1− εn

1+ εn

)2
+

α0

6α2

(1− εn

1+ εn

)3
− 1

6
.

Subtracting (2.2) from (2.1) yields

y′′′(tn)k3
n ≈

yDLN
n+1 − yÃB2

n+1

G(n)+R(n)
, (2.3)

and therefore combining (2.2) and (2.3), we obtain the following estimator of the LTE for the
DLN method.

PROPOSITION 2.2. The local truncation error of the DLN method can be evaluated by

Estimator 1: T̂n+1 =
−G(n)

G(n)+R(n)
(yDLN

n+1 − yÃB2
n+1 ). (2.4)

The Second Estimator. The critical issue for the above technique is that we need a
second order, explicit time-stepping scheme for which the LTE takes the form LTE =Ck3

n +
· · · . According to this principle, we have many other choices. We develop this next for
another explicit, 2-step scheme. Recall [32, 45] the variable step BDF2 method

1+2τn

1+ τn
yn+1− (1+ τn)yn +

τ2
n

1+ τn
yn−1 = kn f (tn+1,yn+1). (2.5)

To derive a second order explicit scheme, we approximate the right hand part of (2.5) by a
second-order linear extrapolation, i.e.,

f (tn+1,yn+1)≈ (1+ τn) f (tn,yn)− τn f (tn−1,yn−1),

to obtain the following explicit scheme

1+2τn

1+ τn
yExBDF2

n+1 − (1+ τn)yn +
τ2

n

1+ τn
yn−1 (2.6)

= kn

[
(1+ τn) f (tn,yn)− τn f (tn−1,yn−1)

]
.

The LTE of the (2.6) scheme is

y(tn+1)− yExBDF2
n+1 ≈ (1+ τn)

2

3τn(1+2τn)
y′′′(tn)k3

n,

and the estimator of LTE writes

Estimator 2: T̂n+1 =
−G(εn)

G(εn)+
(1+τn)2

3τn(1+2τn)

(yDLN
n+1 − yExBDF2

n+1 ). (2.7)
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Time-step Controllers. The main principle for adaptivity is to adjust the step-size such
that the estimator of LTE by DLN is less than or equal to the given tolerance (Tol) [39, 72].
The basic step-size controller for next step size kn+1 is

Basic Controller: kn+1 = κkn

(
Tol/‖T̂n+1‖2

)1/3
, (2.8)

where the safety factor κ ∈ (0,1] is selected to minimize the number of step rejections, and
‖ · ‖2 denotes the Euclidean norm in Rd . At each time-step computing, if ‖T̂n+1‖2 > Tol,
then the solution at current time is rejected and the current step kn is adjusted by (2.8) for
recalculation. For the robustness of computation, we may employ the floor for step size kn,
especially for stiff problems. To remove the limit of step size to a large extent, the following
improved time step controller, based on the basic step controller (2.8) was proposed by Hairer
and Wanner in [46]:

Improved Controller:

kn+1 = kn ·min
{

1.5,max
{

0.2,κ
(
Tol/‖T̂n+1‖

)1/3
}}

. (2.9)

Another way of avoiding the minimum time-step restriction was proposed by Söderlind and
Wang in [74, 76]. They replaced the term (Tol/‖T̂n+1‖) in (2.8) by the geometric average of
of previous LTEs (Tol/‖T̂n+1‖), (Tol/‖T̂n‖) and (Tol/‖T̂n−1‖), namely,

kn+1 = kn
(
Tol/‖T̂n+1‖

)λ1
(
Tol/‖T̂n‖

)λ2
(
Tol/‖T̂n−1‖

)λ3
τ
−η2
n τ

−η3
n−1 .

The values of λ and η are decided by the order of dynamics of the closed loop system [74].
We summarize the adaptive algorithm of the DLN method with Estimator 1 (2.4) or

Estimator 2 (2.7) of LTE and the step controller (2.9) in Algorithm 1.
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Algorithm 1: Adaptivity with Estimator 1 or Estimator 2 of LTE and step size
controller in (2.9)

Input: tolerance Tol, initial value y1, initial stepsize k1, safety factor κ , time
interval [T1,T2];

n⇐ 1; tn⇐ T1 ;
tn+1⇐ tn + kn ; // update the current time

compute yn+1 by one-step method (e.g. backward Euler);
n⇐ n+1, kn⇐ kn−1 ;
while tn + kn < T2 do

t temp
n+1 = tn + kn; τn = kn/kn−1 ; // update current time and step size

ratio

compute yDLN
n+1 ; // find the DLN solution

compute yAB2
n+1 if Estimator 1 used or compute yExBDF2

n+1 if Estimator 2 used ;

T̂n+1⇐
∥∥∥ G(n)

G(n)+( 1
6+

1
4τn )

(yDLN
n+1 − yAB2

n+1 )
∥∥∥ or

T̂n+1⇐
∥∥∥ G(εn)

G(εn)+
(1+τn)2

3τn(1+2τn)

(yDLN
n+1 − yExBDF2

n+1 )
∥∥∥ ;

if T̂n+1 < Tol then
tn+1⇐ t temp

n+1 ; // accept current estimator for LTE

kn+1⇐ kn ·min
{
1.5,max

{
0.2,κ

( Tol
‖T̂n+1‖

)1/3}} ; // adjust step by (2.9)

yn+1⇐ yDLN
n+1 ; // accept result

n⇐ n+1 ; // come to next time step

else
kn⇐ kn ·min

{
1.5,max

{
0.2,κ

( Tol
‖T̂n+1‖

)1/3}} ; // adjust step

3. Error estimation by Refactorization. In this section, we present another adaptive
algorithm, via the refactorization of the DLN method with parameter δ ∈ (0,1), and the

midpoint rule on the interval [told
n , tn+1], where tnew

n+1 =
told
n +tn+1

2 . Since

tnew
n+1− told

n = tn+1− tnew
n+1 = (∆t)BE

n ,

we can use the midpoint rule to obtain another solution (denoted ỹn+1) at tn+1, as an extrapo-
lation of the ynew

n+1 and yold
n values [9, 42]

ỹn+1 = 2ynew
n+1− yold

n . (3.1)

In Proposition 3.1 we will show that ỹn+1 is a first-order approximation to y(tn+1), and thus
the difference between yDLN

n+1 (a second-order approximation) and ỹn+1 works as an estimator
for the DLN LTE:

Estimator 3: T̂n+1 = yDLN
n+1 − ỹn+1. (3.2)
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tn−1 told
n tn tnew

n+1 tn+1

yn−1

yold
n

yn

ynew
n+1

yn+1

ỹn+1

pre-process

pre-process

pre-process

(∆t)BE
n tn+1− tnew

n+1 = (∆t)BE
n

DLN

pre-process

pre-process

Backward Euler

post-process

post-process

Fig. 3.1: Estimator of LTE by the Refactorization Algorithm

We summarize the refactorization process of the two solutions yDLN
n+1 (the DLN solution) and

ỹn+1 in Algorithm 2 and Figure 3.1.

Algorithm 2: Estimator of LTE by the Refactorization Algorithm

Input: yn, yn−1 and tn−1, tn, tn+1 ;
// Pre-process

(∆t)BE
n ⇐ b(n)k̂n ; // time-step for BE

tnew
n+1⇐ β

(n)
2 tn+1 +β

(n)
1 tn +β

(n)
0 tn−1 ; // [tnewn+1− (∆t)BEn , tnewn+1] BE interval

yold
n ⇐ a(n)1 yn +a(n)0 yn−1 ;

// backward Euler

Solve for ynew
n+1:

ynew
n+1− yold

n

(∆t)BE
n

= f
(
tnew
n+1,y

new
n+1
)

// Post-process : extrapolation

yDLN
n+1 ⇐ c(n)2 ynew

n+1 + c(n)1 yn + c(n)0 yn−1 ; // the DLN solution

ỹn+1⇐ 2ynew
n+1− yold

n ; // first order solution for adaptivity

T̂n+1⇐‖yDLN
n+1 − ỹn+1‖ ; // Estimator of LTE

The step size controller for Algorithm 2 becomes

kn+1 = kn ·min
{

1.5,max
{

0.2,κ
(
Tol/‖T̂n+1‖

)1/2
}}

, (3.3)

since ỹn+1 is first order accurate. Then we have the following adaptive DLN Algorithm 3,
using the (3.3) step size controller.

Next we prove the consistency error in evaluating the ỹn+1 solution by the midpoint rule
in Algorithm 2.

PROPOSITION 3.1. The numerical solution ỹn+1 in Algorithm 2 is a first-order approxi-
8



Algorithm 3: Adaptivity with refactorization (Algorithm 2) and step size con-
troller in (3.3)

Input: tolerance Tol, initial value y1, initial stepsize k1, safety factor κ , time
interval [T1,T2];

n⇐ 1; tn⇐ T1 ;
tn+1⇐ tn + kn ; // update the current time

compute yn+1 by one-step method (e.g. backward Euler);
n⇐ n+1, kn⇐ kn−1 ;
while tn + kn < T2 do

tn+1 = tn + kn ;
Input yn, yn−1 and tn−1, tn, tn+1 in Algorithm 2 and obtain yDLN

n+1 and T̂n+1 ;
if T̂n+1 < Tol then

kn+1⇐ kn ·min
{
1.5,max

{
0.2,κ

( Tol
‖T̂n+1‖

)1/2}} ; // adjust step by (2.9)

yn+1⇐ yDLN
n+1 ; // accept result

n⇐ n+1 ; // come to next time step

else
kn⇐ kn ·min

{
1.5,max

{
0.2,κ

( Tol
‖T̂n+1‖

)1/2}} ; // adjust step

mation of y(tn+1), with the local truncation error

L ≈ (1+ εn)

2b(n)
[
(α2−α0)+ εn(α2 +α0)

]F (δ ,εn)y′′(tnew
n+1)kn, (3.4)

where

F (δ ,εn) :=
(
1−2β

(n)
2

)
+2
(
β
(n)
0 −a(n)0 β

(n)
2

)1−εn

1+εn
+a(n)0

(
2β

(n)
0 −1

)(1−εn

1+εn

)2
.

Proof. The LTE of the midpoint method on the interval [told
n , tn+1]

ỹn+1− yold
n

tn+1− told
n

= f
(
tnew
n+1,y

new
n+1
)

is, by definition,

L =
1

tn+1− told
n

{
y(tn+1)−

(
a(n)1 y(tn)+a(n)0 y(tn−1)

)}
− f
(
tnew
n+1,y(t

new
n+1)

)
.

Then using Taylor expansions for all the terms, at time tnew
n+1, yields (3.4). In order to complete

the proof and show that ỹn+1 is only a first-order approximation, it only remains to show that
F (δ ,εn) is strictly negative, since

1+ εn

(α2−α0)+ εn(α2 +α0)
> 0.

Indeed, for fixed δ ∈ (0,1), and for all −1 < εn < 1, we have

lim
εn→−1

F (δ ,εn) =−∞, F (δ ,1) = 0,

and that F (·,εn) is non-decreasing dF (δ ,εn)
dεn

> 0.
9



4. Numerical Tests. We organize our results in two categories. In Section 4.1 we
present two tests, using the constant time step DLN methods. We verify the second-order
convergence, and also compare the stability and performance of the DLN methods versus
other popular second-order methods. In Section 4.2 we compare our adaptive DLN algo-
rithms with some of the well-established time-adaptive solvers.

4.1. Constant Step Tests. In this section, we implement the constant time-stepping
DLN algorithm with three particular values of the parameter δ = 2/3,2/

√
5,1. The value

δ = 2/3 was suggested in [25] in order to minimize the error constant and preserve good
stability properties. The value δ = 2/

√
5 was proposed in [53,54] to ensure the best stability

at infinity. In the case δ = 1, the constant time step DLN method reduces to the symplectic
midpoint rule, having the smallest error constant (see Table 4.3) and conserving all quadratic
Hamiltonians.

4.1.1. Quasi-periodic oscillations. In order to test the second-order convergence of the
DLN methods, we consider the following quasi-periodic oscillations [43]

y(4)+(π2 +1)y′′+π
2y = 0, 0≤ t ≤ 20,

y(0) = 2, y′(0) = 0, y′′(0) =−(1+π
2), y′′′(0) = 0,

with has the exact solution y(t) = cos(t)+ cos(πt). Let en = y(tn)− yn denote the error at
time tn, and

‖e‖2,∞ = max
1≤n≤N

{‖en‖2}, ‖e‖2,2 =
(

∆t
N

∑
n=1
‖en‖2

2

)1/2
.

be the notations for the L∞(0,T ) and L2(0,T ) discrete norms. In Tables 4.1 and 4.2 we
summarize the errors and the rates of convergence for the constant step DLN methods, with
the specified parameters δ = 2/3,2/

√
5, and 1. The values from the Tables 4.1, 4.2, and

Step size δ = 2
3 Rate δ = 2√

5
Rate δ = 1 Rate

0.05 0.32233672 - 0.19537687 - 0.12271718 -
0.025 0.08202388 1.9745 0.04926517 1.9876 0.03084194 1.9924
0.0125 0.02056438 1.9959 0.01234158 1.9970 0.00771706 1.9988
0.00625 0.00514472 1.9990 0.00308709 1.9992 0.00192962 1.9997
0.003125 0.00128642 1.9997 0.00077188 1.9998 0.00048244 1.9999

Table 4.1: The predicted second-order convergence ‖ · ‖2,∞ is observed in the test.

Step size δ = 2
3 Rate δ = 2√

5
Rate δ = 1 Rate

0.05 0.61799316 - 0.37320014 - 0.23460108 -
0.025 0.15634451 1.9829 0.09391299 1.9906 0.05876962 1.9971
0.0125 0.03917128 1.9969 0.02350951 1.9981 0.01469880 1.9994
0.00625 0.00979800 1.9992 0.00587936 1.9995 0.00367508 1.9998
0.003125 0.00244989 1.9998 0.00146999 1.9999 0.00091879 2.0000

Table 4.2: The predicted second-order convergence ‖ · ‖2,2 is observed in the test.

the plots in Figure 4.1 confirm the second-order convergence for all three constant time-step
10
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Fig. 4.1: log-log plot of ∆t vs. errors for constant step DLN algorithms, Tables 4.1 and 4.2.

DLN methods. We also note that in all cases, both errors are decreasing as the value of δ is
increasing.

In Section A, we shall use this test problem to also test the DLN adaptive algorithms
described in Section 2 and Section 3.

4.1.2. Boosted harmonic motion. We compare the errors of DLN with BE, BE plus
time filter, and BDF2 for the problem

x′=µx+
1
µ

y, y′=− 1
µ

x+µy, x(0)=1, y(0)=0, µ =1.e−2, (4.1)

on the time interval [0,20]. The exact solution of (4.1) has a sinusoidal form x(t)= eµt cos(t/µ),
y(t) = eµt sin(t/µ), with an amplitude eµt , i.e., it represents a growing spiral in the phase
plane. This is apparent when we write the system as a second order equation

x′′−2µx′+
(
µ

2 +
1

µ2

)
x = 0, x(0) = 1, x′(0) = 0,

and note that it has a boosting (‘negative’ damping) term. We recall that (4.1) is related to
‘Dahlquist’s stability test’ u′ = λu, where the eigenvalue λ = µ + i 1

µ
. We also mention that

unlike the common case, here λ lies on the right side of the complex plane, with a positive
small real part µ and a much larger imaginary part 1

µ
.

We shall compare the DLN methods versus the original BE, and two other commonly
used second-order methods, namely the ‘BE plus time filter’ (with parameter ν = 2/3) [43]
and BDF2. From backward error analysis, looking at the modified equation (z′+ ∆t

2 z′′= f (z)),
it is expected that BE to have a very dissipative effect. (Indeed, the second order derivative
turns the high frequency into dissipation.) The numerical solutions are influenced both by
the shape of the methods’ stability regions, and by the consistency order and the size of error
constants. All the methods are A-stable, see e.g., Figure 4.2, but in this case, the eigenvalue
λ is not supposed to be damped. The regions of absolute stability for the DLN methods
(corresponding to δ = 2/3 and δ = 2/

√
5) do not differ much from those of the BE, BE

plus time filter and BDF2 methods. The exception is the midpoint rule, (DLN with δ = 1),
which has as its ‘stability region’ exactly the left side of the complex plane. In particular,
the ‘instability region’ being the right half-plane, makes the midpoint method ideal for both

11
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Fig. 4.2: The boundaries of the stability regions of the BE, BE Plus Time Filter, BDF2 and
the DLN methods with δ = 2/3,2/

√
5 and δ = 1. The plot on the right represents a zoomed

frame, showing that for both time steps ∆t = 1.e−2 and ∆t = 1.e−3, the values of λ ∗∆t are
inside of the stability regions for all the methods, except the midpoint rule. This explains the
large errors in Figure 4.3 (a).

stable and unstable problems. This is epitomized by the stiff and unstable problem proposed
by Lindberg, presented in Section 4.2.3. The error constants for the BE+Filter, BDF2 and

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

Errors in Amplitude

(a) (b)

Fig. 4.3: The amplitudes of the errors of the boosted harmonic motion (4.1) for the DLN
methods (δ = 2/3,2/

√
5,1), BE, BE + time filter’, BDF2, with µ = 1.e− 2. The left plot

corresponds to the constant time step ∆t = 1.e−2, while the right plot has ∆t = 1.e−3. Note
that the first-order method BE, even with the smaller time step ∆t = 4.e−6 incorrectly damps
the amplitude.

the constant step DLN methods are summarized in Table 4.3. We recall that the midpoint
method’s error constant is the smallest among all variable-step G-stable one-leg second-order

12



accurate multistep methods [58]. We note that there is an order of magnitude difference
between midpoint’s error constant (1/24) and the error constants of the ‘BE + filter’ (5/6)
or BDF2 (2/9) methods. The ‘BE + time filter’ error constant is 20 times larger (while
BDF2 is about 5.3 times larger) than the midpoint error constant. In Figure 4.3 we report

BE+Filter (ν =2/3) BDF2 δ = 2/3 δ = 2/
√

5 δ = 1
5/6≈0.8333 2

9≈0.2222 2
15≈0.1333 0.070382 1

24≈0.0417

Table 4.3: The errors constants in LTEs for the second-order methods BE+Filter, BDF2, and
the constant step DLN methods δ = 2

3 ,
2√
5

and δ = 1 (the midpoint rule).

the results for the amplitudes of the solutions corresponding to two values the constant time
step ∆t = 1.e−2 (left), and respectively with ∆t = 2.e−3 (right). For completeness, we also
included the result corresponding to the BE method with the time step ∆t = 4.e−6. We note
that for µ = 1.e−2 and ∆t = 1.e−2, all the methods (except for the midpoint rule) are highly
dissipative, driving the solution to zero. For ∆t = 1.e−3, the DLN methods have an improved
performance over BDF2 and BE plus time filter. The BE method, even with a smaller time
step ∆t = 4.e− 6, is over dissipating. Finally, we note that for the considered values of the
time step, with the given µ , the values of λ ∗∆t are close to the imaginary axis, on the right
side of the complex plane, and all lie inside the stability regions shown in Figure 4.2, except
for the midpoint method.

4.2. Variable Step Tests. In this subsection, we evaluate the behavior of the adaptive
variable time-stepping DLN methods, with δ = 2/3,2/

√
5 and 1, on several test problems.

In all cases we use Algorithm 1 (with Milne’s device and AB2-like for the estimator of LTE)
and Algorithm 3 without setting a minimum step size.

4.2.1. Lotka-Volterra Equations. We test conservation of a Hamiltonian for DLN com-
pared with other methods. There is no exact solution, and therefore non-conservation indi-
cates a clear error. We apply the adaptive variable time-stepping DLN methods via Algorithm
1 and Algorithm 3 to the Lotka-Volterra equations [62, 63, 66, 81]

x′ = 2x− xy, y′ =−y+ xy,

x(0) = 4, y(0) = 2, with Hamiltonian (4.2)
H(x,y) = x− lnx+ y−2lny.

We set the time interval to [0,500], and the initial time step k1 = 1.e−4, without restrictions
on the time steps. We use two tolerances Tol=1.e− 6 and Tol=1.e− 8 for Algorithm 1, and
Tol=1.e−6 for Algorithm 3. Then we compare results of the adaptive DLN methods versus
the results of the constant step DLN algorithms, and also those of the MATLAB ode15s,
ode23 and ode45 functions (with relative tolerance 1.e− 6 and absolute tolerance 1.e− 6).
Within these settings, all the solutions are indistinguishable in the phase plane. Therefore we
monitor the conservation of the Hamiltonian function. The results are displayed in Figure
4.4 and number of steps are summarized in Table 4.4. The adaptive DLN algorithm 1 with
Tol = 1.e-8 is more accurate than algorithm 1 with Tol = 1.e-6, but it requires (an order of
magnitude) more time steps. The adaptive DLN algorithm 3 with Tol = 1.e-6 has a similar
behavior to algorithm 1 with Tol = 1.e-8, however it entails an even larger number of time
steps. The accuracy of each algorithm improves as the parameter δ decreases. The Matlab
ode45 function performs better than the ode15s and ode23 functions. All three Matlab
algorithms require a smaller number of time steps than either the adaptive DLN algorithms

13



1 and 3. The constant time step DLN methods have a relatively good performance, but the
Hamiltonian has larger oscillations, especially for small values of δ .
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Fig. 4.4: Testing conservation of Hamiltonian for (4.2). The Adaptive DLN approximates
the Hamiltonian better than the ode45, ode15s and ode23. The constant step DLN methods
have a relatively good performance, but the Hamiltonian has larger oscillations, especially for
small values of δ .

4.2.2. Van der Pol’s equation. We test the phase error of DLN constant versus adaptive
step for the Van der Pol’s equation [2, 15, 80]

x′′−µ(1− x2)x′+ x = 0, x(0) = 2, x′(0) = 0, (4.3)

with the parameter µ = 1000. The problem (4.3) is considered to be very stiff when the
parameter µ is large, and is commonly used to test adaptive solvers [9, 44, 46, 54]. We ex-
amine the solutions of (4.3) computed by the constant step DLN methods with δ = 2/3
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Const. ∆t DLN Alg.1 (Tol=1.e-6) Alg.3 (1.e-6)
δ = 2/3 100,000 79,364 900,497
δ = 2/

√
5 100,000 58,122 924,047

δ = 1 100,000 46,619 -
ode15s ode23 ode45

11,879 29,599 14,149

Table 4.4: Number of steps of DLN algorithms and MATLAB’s ode solvers, for Lotka-
Volterra system (4.2).

and δ = 1, the adaptive DLN algorithms (Algorithm 1 and Algorithm 3), and the MATLAB
ode15s, ode23, ode23s and ode45 functions over 0≤ t ≤ 6000. Due to stiffness, in order
to avoid pre-setting the minimum step size, we use the tolerance Tol = 1.3e-6 and the safety
factor κ = 0.65 for the DLN algorithms. The initial time step is set to be k1=1.e-4. For the
ode23 and ode45 functions we set both the relative tolerance and absolute tolerance to Ab-
sTol = RelTol = 1.e-6. We set the relative tolerance RelTol = 1.e-10 and the absolute tolerance
AbsTol = 1.e-15 for the ode15s and ode23s functions, and used the corresponding solutions
as reference. The Figures 4.5 and 4.6 show the solutions and zoomed in frames of the adaptive
DLN and the constant time step DLN methods, corresponding to δ = 2/3 and δ = 1, versus
the MATLAB ode23, ode45 and the reference solutions by MATLAB ode15s, ode23s.
The Table 4.5 summarizes the number of time steps required by each method. The Figures
4.5(a) and 4.6(a) show that the constant step DLN solutions lag behind the other solutions,
despite of using a large number of time steps. The details in Figures 4.5(b) and 4.6(b) con-
firm that the adaptive DLN Algorithms 1 and 3 perform well for this stiff problem, while from
Table 4.5 we infer that the adaptive Algorithms 1 (based on the midpoint rule and Milne’s
device with AB2-like) is the most efficient by far.
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Fig. 4.5: The solutions and a zoomed in frame for the Van der Pol (4.3) solutions of the
adaptive DLN and the constant time step DLN methods with δ = 2/3, versus the MAT-
LAB ode23, ode45 and the reference solutions by MATLAB ode15s, ode23s (with Rel-
Tol = 1.e-10 and AbsTol = 1.e-15). All methods capture the limit cycle, while the constant
step DLN exhibits a phase error. The Adaptive DLN outperforms the MATLAB ode solvers,
see e.g. Table 4.5.
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Fig. 4.6: Nearly identical results were found for DLN with δ = 1. The solutions and a zoomed
in frame for the Van der Pol (4.3) solutions of the adaptive DLN and the constant time step
DLN methods with δ = 1, versus the MATLAB ode23, ode45 and the reference solutions
by MATLAB ode15s, ode23s (with RelTol = 1.e-10 and AbsTol = 1.e-15).

Constant step DLN Algorithm 1 Algorithm 3
δ = 2/3 6,000,000 62,806 769,319
δ = 1 6,000,000 32,379 -

ode15s ode23 ode23s ode45

19,714 4,377,590 1,593,283 13,242,893

Table 4.5: The number of time steps used by the DLN and the MATLAB ode solvers for
(4.3). The Adaptive DLN is by far the most efficient.

4.2.3. The Lindberg Example. Finally we examine the behavior of the adaptive DLN
algorithms on a stiff problem, where normal methods fail by both underflow and overflow
errors, and for which the eigenvalues of the Jacobian evolve from large negative to large
positive values. The example


y′1 = 104y1y3 +104y2y4,
y′2 =−104y1y4 +104y2y3,
y′3 = 1− y3,
y′4 =−0.5y3− y4 +0.5,


y1
y2
y3
y4

(0) =


1
1
−1
0

 .

was proposed by Lindberg [61], and was used by Watanabe and Sheikh [82] to test the per-
formance of DIFSUB and DIFSOL solvers [73] and their effectiveness in detecting unstable
problems. This system is exactly solvable, by first solving for the y3,y4 unknowns, and then
regarding the first two equations as a 2×2 linear system

[
y′1
y′2

]
= 104

[
y3 y4
−y4 y3

][
y1
y2

]
.
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The exact solution is (see Figure 4.7)
y1 = eg1(t)

[
cos(g2(t))+ sin(g2(t))

]
,

y2 = eg1(t)
[

cos(g2(t))− sin(g2(t))
]
,

y3 = 1−2e−t ,
y4 = te−t ,

where
{

g1(t)=104(t+2e−t−2)
g2(t)=104(1−e−t−te−t)

.

This example is interesting due to the fact that the real part of eigenvalues
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Fig. 4.7: The base 10 logarithmic plot of the Euclidean norm of the (y1,y2) components of the
solution to the Lindberg example 4.2.3. The exact solution on the time interval [0,1.7085] ex-
hibits both underflow and overflow. The plot spotlights the unstable character of the problem,
the solution growing quickly from 10−322 to 10307 on the subinterval [1.4622,1.7085].

λ1,2 = 104(1−2e−t ± i te−t),

of the matrix solving for y1,y2

104
[

1−2e−t te−t

−te−t 1−2e−t

]
,

varies from −104 to 104 in the time interval t ∈ [0,4]. The exact solution (y1,y2) becomes
very small fast, namely (y1,y2)(0.0807) ≈ (−9.8813,9.8813) ∗ 10−324, which is below the
smallest normalized number in double precision [24], see Figure 4.7. Moreover, within a
short time interval t ∈ [1.5,1.7], the (y1,y2) exact solution grows from (−5.7788,−1.7968)∗
10−234 to (−6.3883,8.7874)∗10283.

We now test the ability of the adaptive DLN Algorithm 1 (with Milne’s device for the
estimator of the LTE and the AB2-like solution) and Algorithm 3 to detect the change in the
sign and size of the eigenvalues, and therefore the change in the behavior of the problem,
from a stable to an unstable regime.

(1) Taking into consideration its stiffness, and in order to avoid overflow, we simulate
the Lindberg example on the time interval [0,1.597].

(i) For comparison we also use the MATLAB ode45, ode15s and ode23s func-
tions with the relative and absolute tolerances RelTol=1.e-11, AbsTol=1.e-
15 [60]. Despite these values for the tolerances, the MATLAB ode45, ode15s

and ode23s solvers fail to approximate well the exact solution. Namely,
ode23s approximates the problem correctly up to the time t = 1.102216, when
it fails due to an integration tolerance error, caused by using a step size below
the smallest value allowed 3.552714e-15, as seen in Figure 4.8(a). On the other
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hand, ode15s and ode45 both decrease in the Euclidean norm only to 10−15

at around t = 0.004, and then stay at this value up to almost t = 0.8, when they
blow up, see Figure 4.8(b).

δ = 2/3 δ = 2/
√

5 δ = 1
Algorithm 1 0.79 e-15 0.719 e-15 1.01 e-14

Number of time steps 1,672,599 1,565,431 1,478,057

Table 4.6: The absolute tolerances used for Algorithm 1 in the Lindberg example, on t ∈
[0.0,1.597] and with minimal step size 10−8.
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Fig. 4.8: The base 10 logarithmic plot of the Euclidean norm of the (y1,y2) components of
the solution to the Lindberg example 4.2.3. In the left plot 4.8(a), the ode23s function (with
AbsTol =1.0e-15, and RelTol = 1.0e-11) fails at time t = 1.102216, due to an integration
tolerance error, caused by using a step size below the smallest value allowed 3.552714e-15.
In the right plot 4.8(b), the solutions obtained by ode15s and ode45 (with AbsTol =1.0e-15,
and RelTol = 1.0e-11) both decrease in the Euclidean norm to 10−15 around t = 0.004, and
stay at this value up to around t = 0.8, when they blow up.

(ii) The DLN methods via Algorithm 1, with the tolerances from Table 4.6, and
the initial and minimal step sizes equal to 10−8, all approximate well the exact
solution. The values of the steps sizes are shown in Figure 4.10(a). As seen in
Figure 4.9, for all three values of δ = 2/3,2/

√
5,1, the approximate solutions

decay fast at the beginning of the time interval, stay at a value close to un-
derflow, and sense at the ‘right’ time the change in the sign of the eigenvalue.
There is a difference in the size of the solutions at the final time t = 1.597.
Namely, the ‖(y1,y2)‖2 of the exact solution is around 108, while the DLN
solutions are approximately at 1030.

(iii) We mention that the DLN solutions (δ = 2/3,2/
√

5, and 1) corresponding to
the constant step size methods, with the step sizes ∆t ≈9.5480e-07, ∆t ≈1.0202e-
06 and ∆t ≈1.0805e-06 respectively, do not approximate well the exact solu-
tion at the end of the interval. Indeed, as it can be seen in Figure 4.10(b), the
constant time step solutions do not observe the instability towards the end of
the interval, remaining at a value around zero. More precisely, the log10 of
the Euclidian norms of the (y1,y2) components of the solutions corresponding
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Fig. 4.9: The base 10 logarithmic plot of the Euclidean norm of the (y1,y2) components of
the solution to the Lindberg example 4.2.3. The solutions obtained by the DLN methods
(δ = 2/3,2/

√
5,1, implemented with Algorithm 1, using Milne’s device and (AB2-like))

with absolute tolerances around Tol =1.0e-15 (see Table 4.7) and minimum step size 1.e-8
correctly approximate the exact solution.

to the DLN methods with δ = 2/3 and δ = 1 are 5.6818e-322, 6.7687e-322,
respectively.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

times step sizes

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

 t 

-300

-200

-100

0

100

200

300

(b)

Fig. 4.10: (a) The log10 of the time step sizes for the adaptive DLN methods, for the Lind-
berg example, via Algorithm 1, with minimal step size 1. e-08. (b) The log10 of the Eu-
clidean norm of the constant step solutions for δ = 2/3,∆t ≈ 9.5480e− 07, δ = 1,∆t ≈
1.0805e−06. The constant step solutions do not observe the instability at the end of the time
interval, unlike their adaptive counterparts in Figure 4.9.

(2) In order to focus on the ability of the estimators of Matlab’s ode functions to detect
the change in the stability regime, we shall next simulate the Lindberg example
on the time interval [1.4622,1.597]. We will test Algorithm 1 on the time interval
[1.4622,1.597], while Algorithm 3 we use t ∈ [1.4633,1.597]. We take both the
minimum step size and the initial time step 1.e-8. The tolerances of the two adaptive
DLN algorithms are given in Table 4.7.
The graphs of first and second components by Algorithm 1 are given in Figure
4.11. From Figure 4.11(a) and 4.11(b), the Algorithm 1 with δ = 2/3,2/

√
5,1

simulate relative well while all MATLAB ode functions fail even under small tol-
erance. From Figure 4.12(a) and 4.12(b), we can see that the simulations by Algo-
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δ = 2/3 δ = 2/
√

5 δ = 1
Algorithm 1 0.635∗ (1.e−14) 5.268∗ (1.e−15) 4.627∗ (1.e−15)
Algorithm 3 1.e−14 1.e−14 -

Table 4.7: The absolute tolerances used for the DLN Algorithms, in the Lindberg example,
on the smaller time interval t ∈ [1.4622,1.597], and with minimal step size 10−8.

rithm 2 works much better but with more steps and later initial time. The obvious
difference between the adaptive DLN and MATLAB ode functions can be seen by
log10 (‖(y1,y2)‖) in Figure 4.13(a) and 4.13(b).

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

 t 

-14

-12

-10

-8

-6

-4

-2

0

2
10

8

1.594 1.595 1.596 1.597

-3

-2

-1

0

1
10

8

1.59 1.592 1.594 1.596

-3

-2

-1

0

1
10

8

(a)

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

 t 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
10

8

1.594 1.595 1.596

-15

-10

-5

0

5
10

6

1.59 1.592 1.594 1.596

-15

-10

-5

0

5
10

6

(b)

Fig. 4.11: The first (4.11(a)) and second (4.11(b)) components (y1,y2) of the solution for
the Lindberg example, by Algorithm 1, and several MATLAB ode functions, on the time
interval t ∈ [1.4622,1.597]. All MATLAB ode functions fail at t ≈ 1.596 (the solutions
remain relatively small). The solutions given by the adaptive DLN Algorithm 1 are accurate,
changing from the stable to the unstable regime.

20



1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

 t 

-7

-6

-5

-4

-3

-2

-1

0

1
10

8

1.594 1.595 1.596 1.597

-20

-10

0

10
7

1.59 1.592 1.594 1.596

-20

-10

0

10
7

(a)

1.46 1.48 1.5 1.52 1.54 1.56 1.58 1.6

 t 

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
10

8

1.594 1.595 1.596 1.597

-15

-10

-5

0

10
6

1.59 1.592 1.594 1.596

-15

-10

-5

0

10
6

(b)

Fig. 4.12: The first (4.12(a)) and second (4.12(b)) components (y1,y2) of the solution for
the Lindberg example, by Algorithm 3, and several MATLAB ode functions, on the time
interval t ∈ [1.4633,1.597]. All MATLAB ode functions fail at time t ≈ 1.596 (the solutions
remain relatively small). The solutions given by the adaptive DLN Algorithm 3 are accurate,
changing from the stable to the unstable regime.
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Fig. 4.13: The log10 of the Euclidean norm of the (y1,y2) components of the solution to
the Lindberg example, by Algorithm 1, Algorithm 3, and several MATLAB ode functions,
on the time interval t ∈ [1.4633,1.597]. The solutions given by the MATLAB ode functions
remain relatively small. The solutions given by the adaptive DLN Algorithm 1 and Algorithm
3 approximate well the exact solution, and change from the stable to the unstable regime.
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5. Conclusions. We designed and analyzed two time-adaptive algorithms for the DLN
method. The first algorithm is based on Milne’s device, and it uses the differentiation de-
fect [58] and the second-order (AB2-like) explicit to estimate the local truncation error. The
second algorithm estimates the DLN’s local truncation error by the difference between the
first- and second-order accurate DLN solutions, which are provided by the DLN refactoriza-
tion process in [58]. We found adaptivity based on Milne’s device is efficient and reliable.
The numerical tests in Section 4.1 employ the constant step DLN method, with three values
of the free parameter δ = 2/3, δ = 2/

√
5 and δ = 1 (the midpoint method), to verify the rates

of convergence, and to compare the stability properties of the DLN method to other popular
second-order methods. The tests confirmed the predicted rates of convergence and stabil-
ity. The examples in Section 4.2 use the Lotka-Volterra and the Kepler two-body problem to
compare the DLN adaptive algorithms’ conservation properties with the constant step DLN
methods, and with some of the Matlab’s adaptive algorithms. The results from the Van der
Pol (with µ = 1000) example, a stiff problem, show that the adaptive DLN methods are more
accurate than the corresponding constant step methods, when using the same number of time
steps, and adaptivity controls both amplitude (Hamiltonian) and phase error.

The Lindberg example is a challenging numerical test, even among stiff problems, for
two reasons. The first reason is that the exact solution decays fast to very small values, which
due to underflow (in double precision) would make the solution zero, and stay zero from then
onward. The second and paramount reason is that the exact solution, later on, has a swift
behavioral change, from the stable to an unstable regime. The adaptive Matlab functions:
ode45, and the stiff ode15s, ode23s solvers, all fail to approximate the exact solution, even
when using extreme values for the absolute and relative errors. The adaptive DLN methods,
with all three values of the free parameter δ , approximate reasonably well the exact solution.
The approximate DLN solutions decay to small values, right above the underflow, and then
sense the change from the stable to the unstable regime.

The constant time step DLN methods work well for problems with smooth solutions.
In particular, the symplectic midpoint method has the smallest errors, also conserving all
quadratic Hamiltonians. For stiff problems, the adaptive DLN methods outperform the con-
stant time step algorithms, with minimal computational costs. In our experience, the most
successful step size estimator was the one based on the Milne’s device, using the AB2-like
approximate solution to estimate the local truncation error.
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Appendices
A. Quasi-periodic oscillations. In here we test the adaptive DLN Algorithm 1 (based

on the AB2 estimator) and Algorithm 3 (based on refactorization), on the quasi-periodic
oscillations problem from Section 4.1.1. We use again the time interval t ∈ [0,20], and set the
initial time step k1 = 1.e−2, and the tolerance Tol = 1.e−4. The Figures A.1(a) and A.1(b)
display the solutions corresponding to the DLN methods with Algorithm 1. For comparable
relative ‖ · ‖2,∞ and ‖ · ‖2,2 errors, shown in Table A.1, the number of time steps is rapidly
decreasing as the value of δ increases: 2,948 (δ = 2/3), 2,118 (δ = 2/

√
5), and 1,678

(δ = 1), respectively. We recall that a similar behavior was reported in Section 4.1.1, where
for the same constant time step, the ‖ ·‖2,∞ and ‖ ·‖2,2 errors were decreasing, as the value of
δ was increased. The solutions obtained by the adaptive DLN Algorithm 3 also approximate
well the exact solution (Table A.2), but the number of time steps are considerably larger:
24,880 (δ = 2/3), and 25,649 (δ = 2/

√
5).

We also compare the errors of the adaptive DLN algorithms versus the constant DLN
methods (with the same number of steps for the respective values of δ ) in Table A.1 and Ta-
ble A.2. Using both the ‖ · ‖2,2 and ‖ · ‖2,∞ error norms, the constant time step DLN method
perform slightly better than the adaptive DLN algorithms, under the same number of time
steps. This is an expected observation, since the quasi-periodic oscillations problem is non-
stiff and smooth. However, as seen in stiff test problems (Van der Pol’s equation 4.2.2 and
Lindberg’s example 4.2.3), the adaptive DLN algorithms is more advantageous than the con-
stant step DLN algorithms.
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Fig. A.1: The DLN solutions of the quasi-periodic oscillations Section A, using the adaptive
Algorithm 1 with Milne’s device and (AB2-like) for the estimation of LTE (left). The evo-
lution of the time step sizes is displayed on the right. For comparable relative errors (Table
A.1), the DLN (δ = 2/3) method uses almost twice the number of time steps employed by
DLN (δ = 1).
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δ = 2
3 δ = 2√

5
δ = 1 (δ = 2

3 ) (δ = 2√
5
) (δ = 1)

# time steps 2,948 2,118 1,678
time step ∆t 0.0068 0.0094 0.0119
‖e‖2,∞1.e+3 6.3813 7.4051 7.3755 6.0617 7.0454 7.0163
‖e‖2,21.e+3 12.1539 14.1052 14.0467 11.5443 13.4188 13.3642

Table A.1: The errors corresponding to the quasi-periodic oscillations in Example A, on
the time interval [0,20]. We compare the adaptive DLN Algorithm 1 (using Milne’s device
and (AB2-like)) versus the DLN methods with constant time step, and the same number
of time steps as the adaptive algorithms, respectively (the last three columns). The second
line indicates the number of time steps used in the adaptive algorithms, while the third line
displays the sizes of the corresponding time steps used for the constant case methods. It was
shown in Section 4.1.1 that when all DLN methods (δ = 2/3,2/

√
5,1) are using the same

constant time step, the errors are smaller for the larger values of δ (see Tables 4.1,4.2).

δ = 2
3 δ = 2√

5
Const (δ = 2

3 ) Const (δ = 2√
5
)

# time steps 24,880 25,649
time step ∆t 8.0386e−04 7.7976e−04
‖e‖2,∞ 0.00038190 0.00061367 0.00008513 0.00004806
‖e‖2,2 0.00072598 0.00116607 0.00016212 0.00009153

Table A.2: The errors corresponding to the quasi-periodic oscillations in Example A, on
the time interval [0,20]. We compare the adaptive DLN Algorithm 3 (using refactorization)
versus the DLN methods with constant time step, and the same number of time steps as
the adaptive algorithms, respectively (the last two columns). The second line indicates the
number of time steps used in the adaptive algorithms, while the third line displays the size of
the corresponding time step used for the constant case methods.

B. The Kepler Problem. Consider the two-body Kepler problem [44, 51]
q′1 = p1,
q′2 = p2,
p′1 =−

q1√
(q2

1+q2
2)

3
,

p′2 =−
q2√

(q2
1+q2

2)
3
,


q1(0)
q2(0)
p1(0)
p2(0)

=


1−0.6

0
0√

1+0.6
1−0.6

 ,
with Hamiltonian

H(q1,q2, p1, p2) =
1
2
(

p2
1 + p2

2
)
−
(
q2

1 +q2
2
)−1/2

.

We evaluate the behavior of the adaptive DLN Algorithm 1, Algorithm 3, versus the con-
stant time step DLN methods, and some of the MATLAB ode functions, on the Kepler
problem, over the time interval [0,120]. We set the tolerance Tol=1.e− 8 in Algorithm 1,
Tol=1.e− 6 in Algorithm 3, while for the MATLAB ode functions, we set the relative tol-
erance RelTol=1.e− 6 and the absolute tolerance AbsTol=1.e− 8. The initial step size is
1.e−4, and the number of time steps for the constant step DLN algorithm is 105.
In Figure B.1 we show the phase planes for the q1,q2 and p1, p2 solutions, obtained by the
DLN algorithms corresponding to δ = 2/3, and the MATLAB ode15s, ode23s and ode45

functions. The zoomed in plots in Figure B.1(b) and Figure B.1(d), show that the adaptive
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DLN methods (Algorithm 1 and Algorithm 3) perform better than the constant step DLN
method, and also compared with the MATLAB ode15s, ode23s and ode45 functions. The
same conclusion holds for DLN (δ = 2/

√
5) and DLN (δ = 1).

In Figure B.2 we explore the conservation of the Hamiltonian by the solutions of the DLN
methods δ = 2/3,2/

√
5,1 by Algorithms 1 and 3 versus MATLAB ode15s, ode23s and

ode45 functions. The Table B.1 reports the number of time steps.
From the information in Figure B.2 and Table B.1, we conclude that Algorithm 1 per-

forms better than Algorithm 3, the constant time step DLN methods, and the Matlab ode15s,

ode23s, ode45 functions. The solutions obtained by Algorithm 1 are more accurate than
solutions of the constant step DLN algorithms, with fewer number of time steps. Within
the used tolerances, the Hamiltonian corresponding to the adaptive DLN algorithms is better
conserved than the Hamiltonian corresponding to the MATLAB ode functions, but the DLN
methods use relatively more time steps.
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Fig. B.1: The phase plane corresponding to the q1,q2 and p1, p2 solutions of the Kepler
problem B. The plots show the DLN Algorithm 1 and 3 with δ = 2/3, and the MATLAB
ode15s, ode23s and ode45 functions.

REFERENCES

25



0 20 40 60 80 100 120

t

-0.5001

-0.50008

-0.50006

-0.50004

-0.50002

-0.5

-0.49998

-0.49996

-0.49994

-0.49992

-0.4999

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(a)

0 20 40 60 80 100 120

t

-0.50002

-0.500015

-0.50001

-0.500005

-0.5

-0.499995

-0.49999

-0.499985

-0.49998

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(b)

0 20 40 60 80 100 120

t

-0.5001

-0.50008

-0.50006

-0.50004

-0.50002

-0.5

-0.49998

-0.49996

-0.49994

-0.49992

-0.4999

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(c)

0 20 40 60 80 100 120

t

-0.50002

-0.500015

-0.50001

-0.500005

-0.5

-0.499995

-0.49999

-0.499985

-0.49998

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(d)

0 20 40 60 80 100 120

t

-0.5001

-0.50008

-0.50006

-0.50004

-0.50002

-0.5

-0.49998

-0.49996

-0.49994

-0.49992

-0.4999

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(e)

0 20 40 60 80 100 120

t

-0.50002

-0.500015

-0.50001

-0.500005

-0.5

-0.499995

-0.49999

-0.499985

-0.49998

H
a

m
il
to

n
ia

n
 C

o
n

s
e

rv
a

ti
o

n

(f)

Fig. B.2: The Hamiltonian of the Kepler problem B. The adaptive DLN Algorithm 1 has
better conservation properties.
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Constant step DLN Algorithm 1 Algorithm 3
δ = 2/3 100,000 62,337 154,817
δ = 2/

√
5 100,000 47,202 157,626

δ = 1 100,000 38,775 -
ode15s ode23s ode45
3,374 12,235 3,733

Table B.1: The number of time steps used by the DLN algorithms and the MATLAB ode

functions for the Kepler problem B.
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[74] G. SÖDERLIND, Digital filters in adaptive time-stepping, ACM Transactions on Mathematical Software
(TOMS), 29 (2003), pp. 1–26.
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