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Research Statement: The Search for Time Accuracy in

Computational Fluid Dynamics

Wenlong Pei

Email: wep17@pitt.edu

Computational fluid dynamics (CFD) is the subject devoted to predicting fluid transport, heat trans-

fer, chemical reactions and related phenomena by numerically solving mathematical models that govern

these processes. CFD techniques have been applied to various fields like meteorology, oceanography and

astrophysics and in return CFD provides the ability to simulate any extreme condition in which conducting

physical experiments is impossible. Additionally its cost are relatively low due to no use of expensive exper-

iment equipments and meanwhile its execution time is short and likely to decrease as computers becomes

more powerful.

Well-developed finite element methods for spacial discretization, accompanied by time discretization of

low accuracy, are employed in most CFD simulations. Easily implemented time accurate algorithms with

low storage, little explored but highly expected, would strengthen the reliability of CFD simulation. Time

step adaptivity is the effective way of balancing time accuracy and computational efficiency, which results

in great interest of variable time-stepping analysis for fluid problems. Dahlquist, Liniger and Nevanlinna [3]

have proposed an one-parameter family, which is G-stable (nonlinearly, energetically stable) and second order

accurate for any arbitrary sequence of time steps. To my knowledge, this method is the unique one that

possesses such two excellent properties. My work is to analyze the method of Dahlquist, Liniger

and Nevanlinna (the DLN method), unearthing properties of the method and to apply it to

fluid models.

The DLN method (with parameter θ ∈ [0, 1]) for the ordinary differential system y′(t) = f (t, y(t)) is

2∑
`=0

α`yn−1+` = (α2kn − α0kn−1)f
( 2∑
`=0

β
(n)
` (εn)tn−1+`,

2∑
`=0

β
(n)
` (εn)yn−1+`

)
,

where kn = tn+1 − tn is the local time step, εn = kn−kn−1

kn+kn−1
is the stepsize variability and coefficients

{α`, β(n)
` (εn)}`=0:2 are
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Research Achievements

The complicated form of the DLN method deters its testing in CFD where its excellent properties should

be valued. To solve this issue, I refactorize the DLN method by adding pre-filter and post-filter on backward

Euler method and obtain the following algorithm for each step computation [7]

Algorithm: Refactorization of the DLN Method

Input: yn, yn−1 ;

yold
n ⇐ a

(n)
1 yn + a

(n)
0 yn−1 ;

knew
n ⇐ b(n)k̂n ;

tnew
n+1 ⇐ β

(n)
2 tn+1 + β

(n)
1 tn + β

(n)
0 tn−1 ; // pre-filter for yn, kn and tn+1

Solve for ytemp
n+1 :

ytemp
n+1 −y

old
n

knew
n

= f
(
tnew
n+1, y

temp
n+1

)
; // backward Euler algorithm

yn+1 ⇐ ytemp
n+1 +

(
c
(n)
2 ytemp

n+1 + c
(n)
1 yn + c

(n)
0 yn−1

)
; // post-filter for ytempn+1

To further develop the DLN method, I have obtained the expressions of numerical dissipation in G-

stability identity and local truncation error (LTE) for the DLN algorithm, two important criteria for mea-

suring effect of time-stepping algorithms on fluid models. For constant step case, I have proved L-stability

of the DLN method. To adapt time steps, I extend Gresho’s idea [2] to derive some estimators of LTE for

variable time-stepping DLN method with aid of some explicit methods and the general time step controller

proposed by Söderlind [11].

Equipped with these detailed properties, I have applied the variable time-stepping DLN method

to some flow problems (unsteady Stokes/Darcy model and Navier Stokes equations (NSE))

and performed a completed stability and error analysis of approximate solutions [6, 10]. The

approximate solutions are unconditionally, long time stable and second order accurate under variable time

steps. I have implemented DLN method to Taylor-Green benchmark problem [12] to confirm the second

order convergence rate and adjusted time step using the minimum-dissipation criteria of Capuano, Sanderse,

De Angelis and Coppola [1] for the variable step test problem from Jiang [4] that is inspired by flow between

offset cylinders. The minimum-dissipation strategy, adding only a few lines of code, can be implemented

simply to suppress the time-integration error with desired tolerance and increase efficiency dramatically.
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Current Work and Future Plan

To solve J (J > 1) NSEs simultaneously, Jiang and Layton [4] combine backward Euler method and

ensemble averaging technique to obtain the following algorithm for each jth NSE (j = 1, 2, · · · , J)

un+1
j − unj

∆t
+ 〈un〉 · ∇un+1

j +
(
unj − 〈un〉

)
· ∇unj − ν∆un+1

j +∇pn+1
j = fn+1

j ,

∇ · un+1
j = 0,

where 〈un〉 := 1
J

(∑J
j=1 u

n
j

)
is the ensemble average. The above algorithm at each step is equivalent to the

following block linear system 1
∆tMu + νSu +Nu (〈un〉) BT

B 0

un+1
j

pn+1
j

 =

fn+1
j +

(
1

∆tMu +Nu
(
unj − 〈un〉

))
unj

0

 , (1)

where Mu is the mass matrix, Su is the diffusion matrix, Nu is the convection matrix and B is the continuity

matrix. The resulting coefficient matrix in (1), denoted by A, is independent of j. Denote the solution vector

and the vector on the right hand side by xj and bj respectively, the ensemble algorithms of J NSE is reduced

to

[
A
] [
x1|x2| · · · |xJ

]
=
[
b1|b2| · · · |bJ

]
,

which solves J NSE at the same time as well as significantly reduces the storage due to the shared coefficient

matrix. Now I have combined the DLN method with ensemble algorithm for NSE and completed

the stability and error analysis [8].

The artificial compression algorithm [5] for NSE, changing mass conservation equation ∇ · u = 0 a little

by δpt + ∇ · u = 0 (0 < δ � 1), solves pressure explicitly and largely reduce computation cost in another

way. I have tried the DLN-artificial compression algorithm (the DLN-AC algorithm) to NSE

and proved the stability and convergence of approximate solutions under constant δ [9].

My future research plan includes

• For DLN algorithm on NSE: I will apply semi-implicit DLN algorithm to NSEs for stability and

convergence analysis and then try numerical simulations with adaptivity by LTE criteria.

• For DLN-ensemble algorithm on NSE: I will try simulations of variable time-stepping DLN-

ensemble algorithm on NSE (adapting time step) and then apply DLN-ensemble algorithm to eddy

viscosity model.

• For DLN-AC algorithm on NSE: I will try stability and error analysis of DLN-AC algorithm on

NSE with variable δ and then simulate some classic test problems with both constant δ and variable δ.
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Teaching Statement: Knowledge, Enthusiasm, Patience

and the Desire to Help Others

Wenlong Pei

Teaching is of great joy to me and it comes naturally to me. I am sixth-year Ph.D. student at the

Department of Mathematics, University of Pittsburgh and I worked as teaching assistant every semester.

During the past five years, I have accumulated a wide variety of teaching experience by teaching recitations

for different level of undergraduate courses, which gives me both challenge and pleasure. I feel so honored to

cultivate students with mathematical skills of solving problems and the way of logical thinking. Additionally,

the most important lesson I have learned are qualities for an eligible teacher: knowledge, enthusiasm, patience

and the desire to help others.

I started my teaching experience as TA for Business Calculus recitation which is designed for undergrad-

uate students of business majors. The aim of this course is to provide students with required mathematical

materials(definitions, formulas and theorems) as well as to connect mathematics to economics and business

analysis, giving students the belief that mathematics is really useful in economics and business. During the

second year of Ph.D. study, I started to teach Calculus I,II,III. Most of my students were from science or

engineering departments. These courses have higher requirements than Business Calculus and are used to

endow students with necessary mathematical knowledge for further study in science and engineering. Due to

my previous background in business, I worked as TA for recitations of actuarial mathematics courses when

I became senior graduate student. Actuarial mathematics courses are high level courses for undergraduate

students. The intension of recitations is to consolidate the knowledge offered in lectures by showing con-

crete examples and help students majoring actuarial science to prepare and pass Society of Actuaries (SOA)

exams.

My duties include preparing recitation notes, solving problems before students, conducting quizzes bi-

weekly, grading homework and holding office hours weekly. When I write recitation notes, I follow the

syllabus closely and try to choose relatively challenging examples that would most likely simulate students’

interest in mathematics and arouse their potential of conquering difficulties. Moreover, I have tried to select

many practical problems according to diverse backgrounds and needs of students. For instance, there are

many application problems dealing with business issues in Business Calculus recitation meanwhile problems
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of physics and engineering topics appear in recitations of Calculus I,II,III more often. In actuarial mathemat-

ics recitations, all examples I discuss in class come from previous SOA exams and requires quite familiarity

with course contents and proficient problem-solving skills. Before every recitation, I write recitation notes

(including problems and my solutions) clearly and put them into teaching system online. My students ap-

preciate it a lot because they can preview them before my recitation and concentrate on my explanation

without taking notes. For each specific example in class, I ask enlightening questions, which encourages my

students to participate and think independently. If someone proposes the right way, I write down the steps

and continue to ask what we should do next. Otherwise I give them hints so that they can advance. If

there is a quiz in the recitation, I help students to summarize and review the contents needed for quiz. For

homework grading, I correct wrong solutions from students with detailed comments.

Due to considerable efforts on TA work, I have shown my success in my teaching career and received

numerous positive feedbacks from my students. Here are some selected comments.

• on Business Calculus recitation: “Wenlong always worked through examples in class and always

had time to answer people’s questions.”

• on Calculus II recitation: “He was always ready for recitation, and could easily explain how to do

the problems. He was understanding with being online. Practice problems were always solved correctly

and was very good with time management of the time of the class. Very good recitation.”

• on Actuarial Mathematics I recitation: “clearly explanation of problems very prepared”

• on Actuarial Mathematics III recitation: “He chooses great problems to go over. His explanations

are pretty clear.”

Through ten semesters of teaching in graduate school, I enjoy imparting knowledge to students from

diverse backgrounds and helping them overcome academic hurdles. I have learned a lot from my past

significant teaching experience and I am so proud of having so many teaching opportunities in University of

Pittsburgh. I really hope that in the near future I can continue my teaching career.
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