
Math 0240 - Analytic Geometry & Calculus 3

Final Exam, Fall 2016

Solutions

1. (10pts) Let C be the curve given by r(t) = t i + t2j + 3et−1k. At the point P (1, 1, 3), find the curvature
of C and parametric or symmetric equations of the line tangent to C.

Solution: r′(t) = 1i + 2tj + 3et−1k, r′′(t) = 0i + 2j + 3et−1k.

At the point P (1, 1, 3) t = 1. Therefore, r′(1) = 1i + 2j + 3k, r′′(1) = 0i + 2j + 3k.

r′(1)× r′′(1) = 〈1, 2, 3〉 × 〈0, 2, 3〉 = 〈0,−3, 2〉.

The curvature: κ(1) =
|r′(1)× r′′(1)|
|r′(1)|3

=

√
0 + 9 + 4

(
√

1 + 4 + 9)3
=

√
13

14
√

14
.

The tangent line is the line through P (1, 1, 3) and parallel to the vector r′(1) = 1i + 2j + 3k.

Its parametric equation is x = t+ 1, y = 2t+ 1, z = 3t+ 3.

Symmetric equation:
x− 1

1
=
y − 1

2
=
z − 3

3
.

2. (10pts) Let f(x, y, z) =
x− y
z

+ 4
√
x+ 3z and P be the point P (1, 1, 1). The following three parts are

relevant. You do not need to repeat any calculation.

(a) (4pts) What is the direction in which the maximum rate of change of f occurs at the point P?

(b) (3pts) Compute the directional derivative of f(x, y, z) at the point P in the direction of the vector
v = 2i + 3j + k.

(c) (3pts) At the point P (1, 1, 1), the equation
x− y
z

+ 4
√
x+ 3z = 8 holds. Use the Implicit Function

Theorem to find zx(1, 1).

Solution:

(a) The maximum rate of change of f occurs in the direction of its gradient vector

∇f = 〈fx, fy, fz〉 =

〈
1

z
+ 4 · 1

2
√
x+ 3z

, −1

z
, (x− y) · −1

z2
+ 4 · 1

2
√
x+ 3z

· 3
〉

.

∇f(1, 1, 1) = 〈2, −1, 3〉.

1
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(b) The directional derivative is

Duf(1, 1, 1) = ∇f(1, 1, 1) · v

|v|
= 〈2, −1, 3〉 · 〈2, 3, 1〉√

14
=
〈2, −1, 3〉 · 〈2, 3, 1〉√

14
=

4√
14

.

(c) zx(1, 1) = −fx(1, 1, 1)

fz(1, 1, 1)
= −2

3
. (Recall ∇f(1, 1, 1) = 〈2, −1, 3〉).

3. (10pts) Let S be the ellipsoid given by the equation x2 + y2 − xz + z2 = 2. That is, S is a level surface
of the function F (x, y, z) = x2 +y2−xz+ z2. Find all points on S where the tangent plane is parallel to
the plane x+ 2y + z = 10. (Hint: Use the fact that the coordinates of such a point satisfy the equation
of S.)

Solution: Fx = 2x− z, Fy = 2y, Fz = −x+ 2z.

The normal vector to the plane x+ 2y + z = 10 is n = 〈1, 2, 1〉.

∇F is parallel to n for some constant λ. Therefore, ∇F = λn or
2x− z = λ

2y = 2λ

x+ 2z = λ

The system gives x = y = z = λ. Plug in these results into the equation of S to get λ2+λ2−λ2+λ2 = 2.

Then λ2 = 1 or λ = ±1 and the points are (1, 1, 1) and (−1,−1,−1).

4. (10pts) Find all critical points of the function f(x, y) = 2x2 +y2−x2y. For each critical point determine
if it is a local maximum, a local minimum, or a saddle point.

Solution: fx = 4x+ 0− 2xy = 2x(2− y) = 0 ⇒ x = 0 or y = 2.

fy = 0 + 2y − x2 = 0 ⇒ x2 = 2y.

Now let’s use results x = 0 or y = 2 obtained from the equation fx = 0 to solve the equation x2 = 2y.

If x = 0 then the equality x2 = 2y gives y = 0. If y = 2 then x2 = 4 or x = ±2.

Therefore, critical points are (0, 0), (−2, 2), and (2, 2).

fxx = 4− 2y, fxy = fyx = −2x, fyy = 2.

D(x, y) = fxxfyy − f2xy = 8− 4y − 4x2 (= 4(2− y − x2)).

D(0, 0) = 8 > 0, fxx(0, 0) = 4 > 0 ⇒ there is a local minimum at (0, 0).

D(−2, 2) = −16 < 0 ⇒ (−2, 2) is a saddle point.

D(2, 2) = −16 < 0 ⇒ (2, 2) is a saddle point.
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5. (10pts) Suppose that the volume of a solid E can be represented by the triple integral∫∫∫
E
dV =

∫ 1

0

∫ √1−x2
0

∫ √1−x2−y2

√
x2+y2

dzdydx.

Find the mass of the solid E, if the density function is given by ρ(x, y, z) = e(x
2+y2+z2)3/2 .

Solution:

m =

∫∫∫
E
ρ(x, y, z) dV =

∫ 1

0

∫ √1−x2
0

∫ √1−x2−y2

√
x2+y2

e(x
2+y2+z2)3/2 dzdydx.

In spherical coordinates

m =

∫ π/2

0

∫ π/4

0

∫ 1

0
eρ

3
ρ2 sinφ dρdφdθ =

π

2
·
∫ π/4

0
sinφdφ ·

[
1

3
eρ

3

]1
0

=
π

2
· (− cosφ)

∣∣∣∣π/4
0

· 1

3
(e− 1)

m =
π

6
·

(
1−
√

2

2

)
· (e− 1).

6. (10pts) Given the vector field F(x, y) = (2x ln y − y) i +
(
x2y−1 − x

)
j defined on {(x, y) | y > 0}.

(a) (6pts) Show that F is conservative and find a potential function f .

(b) (4pts) A particle, under the influence of the vector field F, moves along the curve C given by
r(t) = (3t)i+ (2t2 + 1)j from t = 0 to t = 1. Use the Fundamental Theorem of line integrals to find
the work done.

Solution:

(a) F(x, y) = P i +Q j, P = 2x ln y − y, Q = x2y−1 − x.

Qx − Py = (2xy−1 − 1)− (2xy−1 − 1) = 0 ⇒ F is conservative.

f(x, y) =

∫
P dx =

∫
(2x ln y−y) dx = x2 ln y−xy+h(y), fy = x2y−1−x+h′(y) = Q = x2y−1−x

⇒ h′(y) = 0 ⇒ h(y) = c, a constant.

f(x, y) = x2 ln y − xy + c. Take c = 0. Then f(x, y) = x2 ln y − xy.

(b) r(0) = 〈0, 1〉, r(1) = 〈3, 3〉.

W =

∫
C

F · dr = f(3, 3)− f(0, 1) = 9 ln 3− 9.
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7. (10pts)

(a) (4pts) Use Green’s Theorem to show that a region R enclosed by a simple closed curve C, oriented
clockwise, has area

∫
C y dx.

(b) (6pts) Use part a) to compute the area of the region D enclosed by the arch of the cycloid C1 : x =
t− sin t, y = 1− cos t from (0, 0) to (2π, 0) and the line segment C2 : x = t, y = 0 from (2π, 0) to
(0, 0). See the sketch below.

0 2π

C1

C2

Solution:

(a) Let F = 〈P, Q〉 = 〈y, 0〉. Then by Green’s theorem∫
C

Pdx+Qdy =

∫
C

y dx = −
∫∫
R

(Qx − Py) dA = −
∫∫
R

(0− 1) dA =

∫∫
R

dA = A(R), area of R

(b) t = 0 at (0, 0) and t = 2π at (2π, 0).

A(D) =

∫
C1

y dx+

∫
C2

y dx =

∫ 2π

0
(1− cos t)(1− cos t) dt+

∫
C2

0 dx =

∫ 2π

0
(1− 2 cos t+ cos2 t) dt

=

∫ 2π

0

(
1− 2 cos t+

1

2
+

1

2
cos 2t

)
dt =

∫ 2π

0

(
3

2
− 2 cos t+

1

2
cos 2t

)
dt =

3

2
t− 2 sin t+

1

4
sin 2t

∣∣∣∣2π
0

A(D) = 3π − 0 + 0 = 3π.

8. (10pts) Find the area of the surface S that is the part of the cylinder x2 + y2 = 1, below the plane
z = 3− x− y and above the plane z = 0.

Solution: S: x = cos θ, y = sin θ, z = z, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 3− x− y = 3− cos θ − sin θ.

r(θ, z) = 〈cos θ, sin θ, z〉, rθ = 〈− sin θ, cos θ, z〉, rz = 〈0, 0, 1〉.

n = rθ × rz =

∣∣∣∣∣∣∣
i j k

− sin θ cos θ 0

0 0 1

∣∣∣∣∣∣∣ = 〈cos θ, sin θ, 0〉, |n| = 1

A(S) =

∫ 2π

0

∫ 3−cos θ−sin θ

0
1 · 1 dzdθ =

∫ 2π

0
(3− cos θ − sin θ) dθ = 6π.

[ An alternative solution: A(S) =

∫
C
f(x, y) ds

where C: x = cos θ, y = sin θ, 0 ≤ θ ≤ 2π and f(x, y) = z = 3− x− y = 3− cos θ − sin θ.

Then A(S) =

∫ 2π

0
(3− cos θ − sin θ) dθ = 6π. ]
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9. (10pts) Use Stoke’s Theorem to evaluate

∮
C
F · dr, where F(x, y, z) = x2y i +

1

3
x3 j + xy k, and where

C is the curve of intersection of the cylinder x2 + y2 = 1 and the hyperbolic paraboloid z = y2 − x2,
oriented counterclockwise when viewed from above.

Solution: S: x = x, y = y, z = y2 − x2. D: x2 + y2 = 1.

n = 〈−zx,−zy, 1〉 = 〈2x,−2y, 1〉.

curlF =

∣∣∣∣∣∣∣∣∣
i j k

∂
∂x

∂
∂y

∂
∂z

zey 0 xey + 3y2

∣∣∣∣∣∣∣∣∣ = 〈x,−y, 0〉.

By Stoke’s Theorem∮
C

F · dr =

∫∫
S

curlF · dS =

∫∫
D

〈x,−y, 0〉 · 〈2x,−2y, 1〉 dA =

∫∫
D

(
2x2 + 2y2

)
dA

= 2

∫ 2π

0

∫ 1

0
r2 · r drdθ = 2 · 2π · r

4

4

∣∣∣∣1
0

= π.

10. (10pts) Let S be the boundary surface of the solid E enclosed by the paraboloids z = 1 + x2 + y2

and z = 2(x2 + y2), with the normal pointing outward. Compute the flux integral

∫∫
S
F · dS, where

F(x, y, z) =
(
esin z − x2

)
i + 2xyj + (z2 − cos y)k.

Solution: divF = −2x+ 2x+ 2z = 2z. By the Divergence Theorem∫∫
S

F · dS =

∫∫∫
E

divF dV =

∫∫∫
E

2z dV =

∫ π/2

0

∫ 1

0

∫ 1+r2

2r2
2zr dzdrdθ = 2π ·

∫ 1

0

[
z2
]1+r2
2r2

· r dr

= 2π ·
∫ 1

0

(
(1 + r2)2 − (2r2)2

)
· r dr = 2π ·

∫ 1

0

(
r + 2r3 − 3r5

)
dr = 2π ·

[
r2

2
+
r4

2
− r6

2

]1
0

= 2π ·
(

1

2
+

1

2
− 1

2

)
= π.


