MATH 0240 - FINAL EXAM CALCULUS III

Monday, April 22, 2013 - 2:00 - 3:50 a.m.

	LAST NAME: FIRST NAME:				
	SIGNATURE:PEOPLE SOFT NO #:			. •	
	CIRCLE YOUR INSTRUCTOR:	CONSTANTINE	HAHN	SYSOEVA	
1.	DIRECTIONS: Show all work for partial credit.				
2.	No CALCULATORS permitted.				

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
б	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

1. (a) (5 pts.) Find the unit tangent vector \overrightarrow{T} and unit normal vector \overrightarrow{N} to the curve $\overrightarrow{r}(t) = \langle 3\cos t, 4t, 3\sin t \rangle$ at the point

$$P = (\frac{-3}{\sqrt{2}}, 3\pi, \frac{3}{\sqrt{2}})$$

(b) (5 pts.) Find the curvature of the curve at the point P.

2. Use linear approximation to approximate the number:

$$\sqrt{3.04 + e^{-0.08}}$$

3. Determine all local maxima, local minima, and saddle points of $f(x,y)=3y-y^3-3x^2y$.

4. A rectangular box without a lid is to be made from 48 ft² of cardboard. Find the maximum volume of the box. (**Hint:** Use Lagrange multipliers).

5. Find the y coordinate of the center of mass of a lamina that occupies the region bounded by $y^2=x+4, x=0$, and $y\geq 0$ and has density $\rho(x,y)=y$. Simplify your answer as much as possible.

6. Find the volume of the solid that lies within the cylinder $x^2 + y^2 = 4$, above the xy-plane, and below the cone $z^2 = 4x^2 + 4y^2$.

- 7. Let \overrightarrow{F} be the two dimensional vector field given by $\overrightarrow{F}(x,y) = \langle ye^{xy} 1, xe^{xy} + 2y \rangle$.
 - (a) Determine if \overrightarrow{F} is a conservative vector field and If so find a potential function for \overrightarrow{F} .

(b) Find the value of the line integral $\int_C (\overrightarrow{F} \cdot \overrightarrow{T}) ds$ where C is the line segment from (0,3) to (5,0).

8. Use Green's Theorem to find the value of $\oint_C -5x^2dx + 7xy \ dy$ where C is the closed curve consisting of the edges of the triangle with vertices (0,0), (3,1) to (0,3), oriented counterclockwise.

9. Use the Divergence Theorem to find the total flux $\int_S \int \overrightarrow{F} \cdot \overrightarrow{n} ds$, of the vector field $\overrightarrow{F} = \langle x^2, yz^2, -2xz \rangle$ across the surface S given by $x^2 + y^2 + z^2 = 2$ with outward orientation.

10. Use Stokes' Theorem to evaluate $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r}$ where $\overrightarrow{F}(x,y,z) = e^x \overrightarrow{i} + (x^2 + y^2) \overrightarrow{j} + z \overrightarrow{k}$ and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first quadrant oriented counterclockwise from above.