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Problem 1. Function f is given by the formula f(x, y) = 2x2 + 3exy.
a) Find the directional derivative of f at the point P = (1, 0) in the

direction of the vector u =< −1, 2 >.

b) Find the maximal rate of change of f(x, y) at P and the direction in
which it occurs.
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Problem 2. The curve is given parametrically by

r(t) =< t3 +
1

2
t2, 2t− 1, t2 + t

√
5 > .

a) Find its curvature at the point (0,−1, 0).

b) Set up the integral representing the length of the curve from the point
(0,−1, 0) to the point (10, 3, 4 + 2

√
5).

DO NOT EVALUATE THE INTEGRAL.
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Problem 3. Find an equation of the plane tangent to the surface

x2 + y2z2 = 8

at the point P = (2, 2, 1).
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Problem 4. Find all critical points of the function

f(x, y) = x2 + 4xy − 10x+ y2 − 8y + 1.

For each critical point determine if it is a local maximum, a local minimum
or a saddle point.
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Problem 5. Find the work done by the force F(x, y) = 3yi + xj in
moving a particle along the boundary of the trapeziod with the vertices
(0, 0), (1, 1), (2, 1) and (3, 0) in the clockwise direction.
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Problem 6. Find the mass of the solid bounded by the surfaces
y2 + z2 = 1, x = 0 and x = y2 + z2 − 4, if the density function is given by
the formula ρ(x, y, z) = y2 + z2.
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Problem 7. a) Determine whether the vector field

F(x, y, z) = (2y + 4z)i + (2x+ 3z)j + (4x+ 3y)k,

is conservative or not.

b) Evaluate ∫
C

(2y + 4z)dx+ (2x+ 3z)dy + (4x+ 3y)dz,

where C is the curve given by

r(t) =< t3, 2 sin
(
πt

2

)
, 3 cos

(
πt

2

)
>

for 0 ≤ t ≤ 1.
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Problem 8. Find the maximum and minimum values of the function
F (x, y, z) = x− y on the x2 + y2 + xy + z2 = 1
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Problem 9. Evaluate
∮
C

F · dr,

if F(x, y, z) = yi + 2xj + yzk, and C is the curve of intersection of the part
of the paraboliod z = 1 − x2 − y2 in the first octant (x ≥ 0, y ≥ 0, z ≥ 0)
with the coordinate planes x = 0, y = 0 and z = 0, oriented counterclockwise
when viewed from above.
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Problem 10. Evaluate ∫
S

∫
F · dS,

if F(x, y, z) = (yz)i + (x2y)j + (4zx2)k and S is the surface of the solid
bounded by the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0, and the plane
z = 0 with the normal pointing outward.
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