INSTRUCTIONS:

1. NO TABLES, BOOKS, NOTES, HEADPHONES, CALCULATORS, OR COMPUTERS MAY BE USED.

2. Show ALL of your Work on the Exam itself.

1. _____(10) 2. _____(10) 3. _____(10) 4. _____(10) 5. _____(10)
6. _____(10) 7. _____(10) 8. _____(10) 9. _____(10) 10. _____(10)

TOTAL:_______(100)
1. (a) (5 points) Find the unit tangent and unit normal vectors \mathbf{T} and \mathbf{N} to the curve
\[\mathbf{r}(t) = \langle 3 \cos t, 4t, 3 \sin t \rangle \]
at the point $P = \left(-\frac{3}{\sqrt{2}}, 3\pi, \frac{3}{\sqrt{2}} \right)$.

(b) (5 points) Find curvature of the curve at the point P.

2. (10 points) Use LINEAR approximation to approximate the number
\[\sqrt{3.04} + e^{-0.08} \]

3. (10 points) Find all critical points of the function $f(x, y) = 4x - 3x^3 - 2xy^2$. For each critical point determine if it is a local maximum, local minimum or a saddle point.

4. (10 points) Find the volume of the solid E bounded by $y = x^2$, $x = y^2$, $z = x + y + 5$, and $z = 0$.

5. (10 points) Find the y coordinate of the center of mass of a lamina that occupies the region bounded by $y^2 = x + 4$, $x = 0$, and $y \geq 0$ and has density $\rho(x, y) = y$. Simplify your answer as much as possible.

6. (10 points) Evaluate the integral
\[\iint_{R} e^{x-2y} \, dA \]
where R is the parallelogram $ABCD$ with vertices $A = (0,0)$, $B = (4,1)$, $C = (7,4)$, and $D = (3,3)$ using the transformation $x = 4u + 3v$ and $y = u + 3v$. Simplify your answer as much as possible.
7. (10 points) Evaluate the line integral

\[\oint_C e^{2x+y} \, dx + e^{-y} \, dy \]

along the **negatively** oriented closed curve \(C \), where \(C \) is the boundary of the triangle with the vertices \((0,0), (0,1), \) and \((1,0)\).

8. (10 points) Evaluate the integral

\[\iint_S (10 - 2z) \, dS, \]

where \(S \) is the part of the surface \(z = 5 - \frac{x^2}{2} - \frac{y^2}{2} \) inside the cylinder \(x^2 + y^2 = 1 \).

9. (10 points) Evaluate the line integral

\[\oint_C \mathbf{F} \cdot d\mathbf{r} \]

for the vector field \(\mathbf{F}(x, y, z) = -y \mathbf{i} + x \mathbf{j} - z \mathbf{k} \), where the closed curve \(C \) is the boundary of the triangle with vertices \((0,0,5), (2,0,1), \) and \((0,3,2)\) traced in this order.

10. (10 points) Evaluate the flux of \(\mathbf{F}(x, y, z) = z^2y \mathbf{i} + x^2y \mathbf{j} + (x + y) \mathbf{k} \) over \(S \), where \(S \) is the closed surface consisting of the coordinate planes and the part of the sphere \(x^2 + y^2 + z^2 = 4 \) in the first octant \(x \geq 0, \ y \geq 0, \ z \geq 0 \), with the normal pointing outward.