Sample Final Exam

Solutions

- 1. Three points are given: A = (-2, 2), B = (2, 4), C = (-4, 0)
 - (a) (5 points) Find the midpoint D of the segment with endpoints B and C.

Solution:
$$D = \left(\frac{2 + (-4)}{2}, \frac{4 + 0}{2}\right)$$
 +3 pts

$$D = (-1, 2) + 2 \text{ pts}$$

(b) (5 points) Write a slope-intercept equation of a line through A and B.

Solution: Slope is
$$m = \frac{4-2}{2-(-2)} = \frac{2}{4} = \frac{1}{2}$$
 +2 pts

The line equation is $y - 2 = \frac{1}{2}(x - (-2)), y - 2 = \frac{1}{2}(x + 2), y - 2 = \frac{1}{2}x + 1$ +2 pts

$$y = \frac{1}{2}x + 3 \qquad \qquad +1$$
 pts

(c) (5 points) Write a slope-intercept equation of a line perpendicular to AB that passes through B.

Solution: Slope is
$$-\frac{1}{m} = -2$$
 +2 pts

The line equation is y - 4 = -2(x - 2), y - 4 = -2x + 4 +2 pts

$$y = -2x + 8 \qquad \qquad +1 \text{ pts}$$

(d) (5 points) Write an equation of a circle with center at A that passes through C.

Solution: The radius r of the circle is the length of AC: $r^2 = (-4 - (-2))^2 + (0 - 2)^2 = (-2)^2 + (-2)^2 = 4 + 4 = 8$ +2 pts

The circle equation: $(x - (-2))^2 + (y - 2)^2 = 8$ +2 pts

$$(x+2)^2 + (y-2)^2 = 8$$
 +1 pts

2. (10 points) The width of a rectangle is 4 in. greater than half of the length, and the perimeter is 44 in. Find the width and the length of the rectangle.

Solution: Let l be the length. Then the width is $w = \frac{1}{2}l + 4$. +2 pts

Then
$$2l + 2\left(\frac{1}{2}l + 4\right) = 44$$
 +3 pts

$$3l + 8 = 40, \ 3l = 36, \ l = 12$$
 +2 pts

$$w = \frac{1}{2} \cdot l + 4 = 6 + 4 = 10$$
 +2 pts

Answer: the width is 10 in and the length is 12 in. +1 pts

3. (10 points) With a \$70 membership of Nice Valley orchestra one can buy tickets for \$15 per a concert. Tickets for non members are \$20. For what number of concerts is it cheaper to buy tickets with the membership? Use an inequality to solve the problem.

Solution: A cost of x concerts with a membership is 70 + 15x and without a membership it is 20x dollars. +3 pts

We need to find when $70 + 15x < 20x$	$+2 ext{ pts}$
70 < 20x - 15x, 5x > 70	$+2 { m \ pts}$
x > 14	$+2 \mathrm{ pts}$

Answer:

It is cheaper to buy a membership if the number of concerts is greater than 14. +1 pts

- 4. Given that $f(x) = \sqrt{x+1}$ and g(x) = 2x 6 find each of the following
 - (a) (5 points) (f/g)(8). Solution: $(f/g)(x) = \frac{\sqrt{x+1}}{2x-6}$ +3 pts

$$(f/g)(8) = \frac{\sqrt{8+1}}{16-6} = \frac{3}{10} = 0.3$$
 +2 pts

- (b) (5 points) Domain of the function (f/g)(x) in interval notation.
 - Solution: $x+1 \ge 0$ and $2x-6 \ne 0$ +2 pts
 - $x \ge -1$ and $x \ne 3$ +2 pts

The domain is
$$[-1,3) \cup (3,\infty)$$
 +1 pts

(c) (5 points) $(f \circ g)(15)$. Solution: $(f \circ g)(x) = \sqrt{2x - 6 + 1} = \sqrt{2x - 5}$ +3 pts

$$(f \circ g)(15) = \sqrt{30} - 5 = \sqrt{25} = 5$$
 +2 pts

- (d) (5 points) $(g \circ f)(15)$. Solution: $(g \circ f)(x) = 2\sqrt{x+1} - 6$ +3 pts $(g \circ f)(15) = 2\sqrt{16} - 6 = 8 - 6 = 2$ +2 pts
- (e) (5 points) value(s) of x such that $(g \circ f)(x) = 0$.
 - Solution: $2\sqrt{x+1} 6 = 0$ +1 pts
 - $2\sqrt{x+1} = 6 +1 \text{ pts}$
 - $\sqrt{x+1} = 3 \qquad \qquad +1 \text{ pts}$
 - x + 1 = 9 +1 pts
 - x = 8 +1 pts

5. Determine whether the function is even, odd, or neither

(a) (5 points)
$$f(x) = x^2 - |x|$$
.
Solution: $f(-x) = (-x)^2 - |-x| = x^2 - |x| = f(x)$ +4 pts

The function is even.

$$+1 \mathrm{~pts}$$

+1 pts

(b) (5 points) $f(x) = x^3 - |x|$. Solution: $f(-x) = (-x)^3 - |-x| = -x^3 - |x|$ +2 pts $f(-x) \neq f(x), \ f(-x) \neq -f(x)$ +2 pts

The function is neither even nor odd.

6. Simplify. Write answers in the form a + bi, where a and b are real numbers.

(a) (5 points)
$$\sqrt{-49} - 4i^2 - 5i - \sqrt{49}$$
.
Solution: $\sqrt{-49} - 4i^2 - 5i - \sqrt{49} = 7i + 4 - 5i - 7$.
 $= -3 + 2i$
+1 pts

(b) (5 points)
$$\frac{1+i}{1-i}$$
.
Solution: $\frac{1+i}{1-i} = \frac{1+i}{1-i} \cdot \frac{1+i}{1+i}$. +2 pts

$$=\frac{(1+i)^2}{(1-i)(1+i)} = \frac{1+2i-1}{1+1} +2$$
 pts

$$=rac{2i}{2}=i$$
 +1 pts

7. (10 points) List all roots (real and complex) of the function $f(x) = (x^2 - 4x + 8)(x^2 - 4x + 3)$

Solution:
$$(x^2 - 4x + 8)(x^2 - 4x + 3) = 0.$$
 +2 pts

$$x^2 - 4x + 8 = 0, \ x^2 - 4x + 3 = 0.$$
 +2 pts

$$x = \frac{1}{2}(4 \pm \sqrt{16 - 32}), \ x = \frac{1}{2}(4 \pm \sqrt{16 - 12}).$$
 +2 pts

$$x = \frac{1}{2}(4 \pm 4i), \ x = \frac{1}{2}(4 \pm 2).$$
 +2 pts

$$x_1 = 2 - 2i, x_2 = 2 + 2i, x_3 = 1, x_4 = 3.$$
 +2 pts

8. (10 points) Solve the inequality |3x + 6| < 15 and write interval notation for the solution set. Then graph the solution set.

Solution:
$$-15 < 3x + 6 < 15$$
. +2 pts

$$-21 < 3x < 9.$$
 +2 pts

$$-7 < x < 3.$$
 +2 pts

The solution set is
$$\{x \mid -7 < x < 3\}$$
 or $(-7, 3)$. +2 pts

$$-9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 1 2 3 4 +2 pts$$

9. (10 points) Find the formula for the inverse function of $f(x) = \frac{3^{2x} + 7}{4}$ and its domain.

Solution:
$$y = \frac{3^{2x} + 7}{4}, \ x = \frac{3^{2y} + 7}{4}$$
 +2 pts

$$3^{2y} + 7 = 4x$$
 +1 pts

$$3^{2y} = 4x - 7$$
 +1 pts

$$2y = \log_3(4x - 7) + 2$$
 pts

$$y = \frac{1}{2}\log_3(4x - 7)$$
 +1 pts

The inverse function is $f^{-1}(x) = \frac{1}{2}\log_3(4x - 7)$ +1 pts

(Note $f^{-1}(x) = \frac{1}{2} \log_3 |4x - 7|$ is a wrong answer).

The domain is 4x - 7 > 0, $x > \frac{7}{4}$ or $\left(\frac{7}{4}, \infty\right)$ +2 pts

10. (10 points) Solve the inequality $\frac{x+2}{x^2-3x} > 0$

Solution:
$$x + 2 = 0$$
, $x = -2$ +1 pts
 $x^2 - 3x = x(x - 3) = 0$, $x = 0$, $x = 3$ +1 pts

Critical values are x = -2, x = 0, and x = 3

Interval	$(-\infty,-2)$	(-2,0)	(0,3)	$(3,\infty)$	
Test Value	$f(-3) = -\frac{1}{18}$	$f(-1) = \frac{1}{4}$	$f(1) = -\frac{3}{2}$	$f(4) = \frac{3}{2}$	$+4 \mathrm{~pts}$
Sign of $f(x)$	Negative	Positive	Negative	Positive	

Answer: $(-2,0) \cup (3,\infty)$

+2 pts

+2 pts

- 11. In a certain year, a total of 4 million passengers took a cruise vacation. The global cruise industry has an exponential growth rate of 6% per year.
 - (a) (5 points) Find the exponential growth function.

Solution:
$$6\% = 0.06$$
, $P_0 = 4$ millions. $+2$ pts

$$P(t) = 4e^{0.06t}$$
 +3 pts

(b) (5 points) In how many years the number of passengers will double? Leave your answer in exact form.

Solution: Let T be the doubling time. Then

$$4e^{0.06T} = 2 \cdot 4, \ e^{0.06T} = 2 + 2 \text{ pts}$$

$$\ln e^{0.06T} = \ln 2, \ 0.06T = \ln 2$$
 +2 pts

$$T = \frac{\ln 2}{0.06} \text{ years.} +1 \text{ pts}$$

12. (15 points) The graph of $f(x) = \ln x$ is shown. On the same axis given, use transformations to sketch the graph of $g(x) = 1 - \ln(x - 1)$. Describe how the graph of g(x) was obtained from the graph of f(x).

Solution:

Give 3 points for every right plot of the functions $\ln(x-1)$, $\ln(x-1)$, and $1-\ln(x-1)$.

- 1. The graph of $\ln(x-1)$ is a shift of the graph $\ln x$ right one unit. +2 pts
- 2. The graph of $-\ln(x-1)$ is a reflection across the x-axis of the graph $\ln(x-1)$. +2 pts
- 3. The graph of $1 \ln(x 1)$ is a shift of the graph $-\ln(x 1)$ up one unit. +2 pts

13. (10 points) Simplify the equation $3\log_2 x + 4 - \log_2(8x^2) = 0$ and solve it for x.

Solution:

$$\log_2 \frac{(x^3)(2^4)}{8x^2} = \log_2 1$$
 +4 pts

 $\log_2(2x) = \log_2 1$
 +3 pts

 $2x = 1$
 +2 pts

 $x = \frac{1}{2}$
 +1 pts

- 14. The Coffee Shoppe sells a coffee blend made from two coffees, one costing \$5/lb and the other costing \$7/lb. The blended coffee sells for \$5.60/lb. The weight of the blended coffee is 100 lbs. Find how much of each coffee in pounds is used to obtain the desired blend.
 - (a) (5 points) Formulate the problem as a system of linear equations.

Solution: Denote by x the weight in lb of the first coffee in the blend and by y the weight of the second coffee. +2 pts

The cost of 100 lbs of the blended coffee is $100 \times 5.6 = 560$ dollars. +1 pts

Then we obtain a system of two equations with two unknowns:

$$x + y = 100$$

 $5x + 7y = 560$ +2 pts

(b) (5 points) Solve the system using the elimination method.

Solution: We multiply the first equation by -5

$$\begin{array}{rcl}
-5x - 5y &= -500 \\
5x + 7y &= & 560 \\
\end{array} + 1 \text{ pts}$$

and add the result to the second equation:

$$2y = 60 \qquad \qquad +1 \text{ pts}$$

Then

$$y = 30$$
 +1 pts

and, from the first equation

$$x = 100 - y = 100 - 30 = 70$$
 +1 pts

Answer:	The weight of coffee that costs $5/lb$ is 70 lbs	
and the v	weight of coffee that costs $7/lb$ is 30 lbs.	$+1 \mathrm{~pts}$

15. For the given system of equations

$$\begin{array}{rcl} x - 2y &= -1 \\ -2x + 5y &= 4 \end{array}$$

(a) (5 points) Write an equivalent matrix equation.

Solution:
$$\begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 4 \end{bmatrix} +5 \text{ pts}$$

(b) (5 points) Find an inverse matrix.

Solution: The matrix of the system is
$$A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$$
 +1 pts

The augmented matrix is

$$\begin{bmatrix} 1 & -2 & | & 1 & 0 \\ -2 & 5 & | & 1 & 0 \end{bmatrix} +1 \text{ pts}$$

$$\begin{bmatrix} 1 & -2 & | & 1 & 0 \\ 0 & 1 & | & 2 & 1 \end{bmatrix}$$
 New row 2 = row 2 + 2 (row 1) +1 **pts**

$$\begin{bmatrix} 1 & 0 & | & 5 & 2 \\ 0 & 1 & | & 2 & 1 \end{bmatrix}$$
 New row 1 = row 1 + 2 (row 2) +1 **pts**

Therefore, the inverse matrix is
$$A^{-1} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$$
 +1 pts

(c) (5 points) Solve the system by using the inverse matrix.

Solution:
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 4 \end{bmatrix} +1 \text{ pts}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -5+8 \\ -2+4 \end{bmatrix} + 2 \text{ pts}$$

$$\left[\begin{array}{c} x\\ y\end{array}\right] = \left[\begin{array}{c} 3\\ 2\end{array}\right] +1 \text{ pts}$$

$$x = 3, y = 2$$
 +1 pts

16. (15 points) Graph the solution set of the system.

Solution: The point of intersection of two curves:

$$y = -x + 3 = 2x, \ 3x = 3, \ x = 1, \ y = 2, \ (1, 2).$$
 +3 pts

The test points are (0,0) for $x+y \ge 3$ and (0,1) for -2x+y > 0. +3 pts

+9 pts