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Abstract

This paper presents an efficient multiscale stochastic framework for uncertainty
quantification in modeling of flow through porous media with multiple rock types. The
governing equations are based on Darcy’s law with nonstationary stochastic permeabil-
ity represented as a sum of local Karhunen-Loeve expansions. The approximation uses
stochastic collocation on either a tensor product or a sparse grid, coupled with a domain
decomposition algorithm known as the multiscale mortar mixed finite element method.
The latter method requires solving a coarse scale mortar interface problem via an itera-
tive procedure. The traditional implementation requires the solution of local fine scale
linear systems on each iteration. We employ a recently developed modification of this
method that precomputes a multiscale flux basis to avoid the need for subdomain solves
on each iteration. In the stochastic setting, the basis is further reused over multiple re-
alizations, leading to collocation algorithms that are more efficient than the traditional
implementation by orders of magnitude. Error analysis and numerical experiments are
presented.

Keywords. uncertainty quantification, stochastic collocation, multiscale basis, mortar
finite element, mixed finite element, porous media flow, Smolyak sparse grid

1 Introduction

Accurately predicting physical phenomena often involves incorporating uncertainties into
a model’s input, due to both natural randomness and incomplete knowledge of various
physical properties, and then following those uncertainties into the model’s output. In this
paper we simulate single-phase flow though porous media, by modeling the permeability as
a spatially random function. As a result, the equations governing the flow are stochastic.
The goal is uncertainty quantification (UQ) via the computation of the expectation and
variance of the stochastic solution, with the latter giving a measure of confidence of the
former. To compute these statistical moments, we employ the stochastic collocation method
[8, 36, 27, 18] coupled with the multiscale mortar mixed finite element method (MMMFEM)
[6] implemented with a multiscale flux basis [19].
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Stochastic modeling methods can be classified into three groups: (1) sampling meth-
ods [15], (2) moment/perturbation methods [38], and (3) non-perturbative methods based
either on polynomial chaos expansions [37] or stochastic finite elements [13, 20]. A brief
survey of these methods can be found in [32], where an extensive reference list is given.
In this order, these methods range from being non-intrusive to very intrusive in terms of
modifications to the deterministic model. The stochastic collocation method is a member
of the first category along with the well known Monte Carlo (MC) method [15]. Whereas
MC simulations require generating a large number of realizations at random points in the
stochastic event space, the stochastic collocation method instead performs realizations at
specifically chosen collocation points. This technique obtains better accuracy than MC
with fewer realizations. While the non-sampling methods such as moment/perturbation
and stochastic finite elements are known to be highly accurate, in practice they are only
suitable for systems with relatively small dimensions of random inputs. Their intrusive
character complicates implementation, and the resulting large coupled systems may be dif-
ficult to parallelize. Conversely, sampling methods generate systems of the same size as
their deterministic equivalents that are completely decoupled from each other and hence
very easy to parallelize.

In our model, the mean removed log permeability function is parameterized using in-
dependent identically distributed random variables in a truncated Karhunen-Loeve (KL)
expansion. The eigenvalues and eigenfunctions forming this series are computed from a
given covariance relationship in which statistical properties such as variance and correla-
tion lengths are assumed to be experimentally determined.

This work builds upon the framework for stochastic collocation and mixed finite ele-
ments that was developed in [18]. There, the porous media was assumed to be stationary,
meaning that the statistical properties of the permeability were assumed to be constant
throughout the domain. In this work we follow [26], see also [35] for a related perturbation-
based approach, in extending this framework to allow nonstationary porous media with
different covariance functions for different parts of the domain. These statistically inde-
pendent zones are used to represent multiple rock types, motivated by geologic features
such as stratification. We shall refer to these zones as KL regions. In this framework
for nonstationary porous media, the covariance between any two points within a single KL
region depends on their distance only, but the covariance between any two points which lie
in different KL regions is zero, i.e. they are uncorrelated.

In porous media problems, resolving fine scale accuracy is oftentimes computationally in-
feasible, necessitating multiscale approximations, such as the variational multiscale method
[24, 4] and multiscale finite elements [23, 10, 2]. Both have been applied to stochastic
problems in [7, 17] and [14, 1] respectively.

This paper employs for each stochastic realization the MMMFEM [6], with the recently
proposed multiscale flux basis implementation [19]. As a mixed method, it provides accurate
approximation of both pressure and velocity and element-wise conservation of mass, which
are advantageous properties for porous media flow. The MMMFEM uses non-overlapping
domain decomposition to break up the physical domain into subdomains controlled by
separate computer processors, giving a natural parallelization within a fixed realization,
thereby enabling UQ for very large problems.! Within each subdomain, there is a fine scale
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discretization that may be spatially non-conforming to its neighboring subdomains. On
subdomain interfaces, a coarse scale mortar discretization is used to impose weak continuity
of the discrete normal velocities. Using these varying scales, the global fine scale problem is
reduced to a coarse scale interface problem and solved in parallel using an iterative method.
We present error analysis for the stochastic multiscale approximation of the pressure and the
velocity. We refer the reader to [25] for work on overlapping Schwarz domain decomposition
methods for stochastic partial differential equations.

Notice that the physical domain has two decompositions: KL regions for the statistical
representation of the nonstationary random permeability, and subdomains for the domain
decomposition of the MMMFEM. The former is a physical decomposition depending on
geologic structure, and the latter is a computational decomposition depending on available
computing resources. It is our choice in implementation that the subdomains conform to
the KL regions, meaning that each subdomain belongs to a single KL region. Therefore the
number of KL regions Ng is less than or equal to the number of subdomains Np, and each
KL region can be expressed as a union of one or more disjoint subdomains. This approach
allows for utilizing more processors than the physically dependent number of KL regions.

In a deterministic setting, the traditional implementation of the interface iteration in
the MMMFEM requires solving one Dirichelet-to-Neumann problem on each subdomain
(a linear system) for each interface iteration. Solving these subdomain problems is the
dominant computational cost of the MMMFEM, and therefore this cost worsens with the
condition number of the problem. In [19], a new approach was proposed called multiscale
flux basis implementation, in which one subdomain problem is solved for each mortar de-
gree of freedom before the interface iteration begins. The solutions to these problems form
a basis of flux responses containing all the necessary information to solve the subdomain
problem. The computational cost in forming the basis is a fixed and controllable quantity,
and therefore does not worsen with the condition number of the problem. Linear com-
binations of multiscale basis functions are used during the interface iteration so that no
additional subdomain problems are required, except for one or more additional solves to
recover the local fine scale information at the completion of the iteration. Therefore the
multiscale flux basis implementation is more efficient in cases where the number of interface
iterations strictly exceeds the number of mortar degrees of freedom per subdomain. This
gain in computational efficiency increases with the number of subdomains.

In this paper we propose possible ways that extend the concept of a multiscale flux
basis to the stochastic flow problem, where the permeability is a nonstationary random
field. To this end, we investigate three algorithms that combine stochastic collocation and
the MMMFEM with varying degrees of the multiscale flux basis implementation. The first
collocation algorithm uses the MMMFEM with its traditional implementation, requiring
solving one subdomain problem per interface iteration, on every stochastic realization. The
second collocation algorithm forms a deterministic multiscale basis to solve the MMMFEM
on each stochastic realization. These bases are then discarded and then re-computed with
new permeability data for each subsequent realization. The third collocation algorithm
forms a full stochastic multiscale basis across all local realizations, containing all the nec-

nature of stochastic sampling. It is entirely possible to compute several simultaneous realizations in parallel,
while also utilizing the parallelization in the MMMFEM'’s domain decomposition, but this is not considered
in this work.



essary information to perform the collocation before it begins. With extra “book-keeping”
in the nonstationary case, we can take advantage of the repeated local structure of the
permeability realizations in both tensor and sparse stochastic collocation. In particular,
the multiscale flux basis for a fixed subdomain and a fixed realization is reused a number
of times during the stochastic collocation process for all cases with the same local perme-
ability realization. This increases substantially the gain in computational efficiency from
the multiscale flux basis. We refer the reader to [33] for the use of the multiscale flux basis
as a preconditioner, which provides a different approach for its reuse over many stochastic
realizations and can lead to even larger speedup.

The resulting collocation algorithms are more computationally efficient than the tra-
ditional implementation by orders of magnitude. By limiting the number of subdomain
solves via the computation of deterministic or stochastic multiscale bases, we demonstrate
that we can lessen the burden of the curse of dimensionality in the stochastic collocation
method. We present a number of computational experiments that confirm the above state-
ment. Some of the examples show how a posteriori error estimation and adaptivity for the
MMMFEM can be employed in stochastic multiscale simulations. We also present numerical
convergence studies that confirm the theoretical a priori error estimates.

1.1 Notation

Let D ¢ R? (d = 2 or 3) denote the physical domain. It is bounded, with Lipshitz boundary
0D and outer unit normal n. Let €2 denote the stochastic event space with probability
measure P. The expectation and variance of a random variable £(w) : © — R with a
probability density function (PDF) p(y) are denoted by

Bl = /Q £(w)dP(w) = /R yp(y)dy and  varlé] = E[¢?] — (E[¢])?. (1)

In the following, C' denotes a generic positive constant independent of the discretization

Table 1: Constants used throughout this paper.
Constant | Represents number of...

Np Subdomains
Nq KL regions
Nierm Total stochastic dimensions

Nterm (i) | Stochastic dimensions in KL region ¢
Neon(?,7) | 1-D tensor product collocation points in dimension j of KL region i

Nreal(7) Local permeability realizations in KL region 4

Nieal Global permeability realizations

Nyot(7) Mortar degrees of freedom on subdomain 4

Niter(7) Conjugate gradient iterations for global collocation index ¢

parameters h and H. For a domain G C R?, the L?(G) inner product and norm for scalar

and vector valued functions are denoted (-,-)¢ and || - ||, respectively. We omit G in the
subscript if G = D. The norm in the Sobolev space H*(G) will be denoted by | - ||s,c. For
a section of the domain or element boundary S C R%! we write (-,-)s and || - || for the



L?(S) inner product (or duality pairing) and norm, respectively. Dual spaces are denoted
by (-)*. Constants that are frequently used throughout this paper are given in Table 1.

The rest of the paper is organized as follows. In Section 2 we present the stochastic model
problem and its domain decomposition variational formulations. The stochastic multiscale
discretization based on stochastic collocation and the MMMFEM is described in Section 3.
The error analysis of the method is given in Section 4. In Section 5 we discuss three different
algorithms that can be used to solve the fully discrete problem. A number of computational
examples are presented in Section 6.

2 Model Problem

We consider Darcy’s law for steady-state, single-phase, incompressible flow through a sat-
urated porous medium in physical domain D. Let 0D = TpUT N, Ip N Ty = (. Let the
permeability K be a stochastic function defined on D x . The Darcy velocity u and the
pressure p are stochastic functions that satisfy P-almost everywhere w € €,

V-u=f, in D, (2a)
u=—-K(x,w)Vp, in D, (2b)
P =gp, on I'p, (2¢)
u-n =gy, on I'y. (2d)

We assume that f(x) € L?(D), gp(x) € H/?(T'p), and gn(x) € L*(T'y) are deterministic
functions. The permeability K (x,w) is either a scalar or diagonal 2-tensor, which, for
P-almost every w € €, is uniformly positive definite with components in L (D).

In order to guarantee positive permeability almost surely in €2, we consider its logarithm
Y = In(K). Let the mean removed log permeability be denoted by Y’ so that

Y(x,w) = E[Y](x) + Y'(x,w).
Following [26], let D be a union of disjoint KL regions, D = Ui]iﬂlﬁ([?L. Strictly within
each KL region, the porous medium is statistically stationary, meaning covariance between
any two points depends only on their distance and not on their location. The covariance
between any two points from different regions is zero. Therefore the medium is globally

nonstationary. As a result the probability space Q is a product of Ng, spaces Q®). For each
event w € €2,

w= W, .., w®™)) and Y'(x,w)= ZY(i)(X,w(i)),

where Y () (x,w®) has physical support in D}?L.



2.1 Karhunen-Loéve (KL) Expansion

Each Y is assumed to be colored noise, for which we are given a covariance function. These
are symmetric and positive definite, so they can be decomposed into series expansions

Oy (x,%) = B[y D (x,0 )y =3 A Y079 (x).

Jj=1

(@)

The eigenvalues A j
equations

and eigenfunctions f](z) are computed by solving the Fredholm integral

o, Croo o7 () = N1 ). (3)
Since the Cy ;) are symmetric and positive definite, the eigenfunctions are mutually orthog-
onal and form a complete spanning set. Using these facts, the Karhunen-Loeve expansion
for the log permeability can be exactly written as

NQ > . . . .
=3 > G, ()
i=1 j=1

where the eigenfunctions f]@ (x) computed in (3) have been extended by zero outside of
DE?L and the fj(.i) : ©; — R are independent identically distributed random variables [20].
In our work we assume the Y are Gaussian processes, so each 5(“ is a normal random

variable with zero mean and unit variance, having PDF ,0 ( ) = 1/3/2mexp|—y?/2].
As is typically done at this point, we commit a modehng error that replaces the stochastic
problem by a higher dimensional deterministic approximation.

Assumption 2.1. (Finite Dimensional Noise Assumption). Each KL expansion Y@ s
truncated after Nyeym(i) terms, which allows us to approzimate (4) by

NQ Nferm - .
S S IO I (5)
=1 gj=1

This is feasible to do as the eigenvalues /\y) typically decay rapidly [39]. Globally, this
means that we have Nigm = D Nierm(7) terms in Y. A low number of terms leads to a
smooth permeability in a KL region. Therefore to model very heterogeneous noise in a KL
region, Nierm(7) should be increased. The images of the random variables S;Z) = §§Z)(Q(i))
make up the finite dimensional vector spaces

Nterm(Z ) Q )
H SW Cc RMem®  ang  §=]] §@ ¢ RNwem,

which are local to each KL region and global, respectively.



To simplify notation, we shall introduce a function s that provides a natural ordering
for the global number of stochastic dimensions. Let the j-th stochastic parameter of the
i-th KL region have a global index in {1,..., Niem} by the function

7, ifi=1

D= 543 Nemk), > 1.

For example, the random vector £ = (fj(-i)> L xig)<N = <§J(-i)> is by definition equal to
Kr(2,] term K

(1) 5 (2 5(2) §(i) (Na) (Na)
'..7Ntcrm 7“.71\7tcrm T .] L 1 "..7NtcrmNQ
KL region 1 KL reglon 2 KL region Ngq

If py) is the PDF of each §j(-i), then joint PDF for ¢ is defined to be p = []; Hj pgi). Then
we can write Y (x,w) ~ Y (x,y), where y = (gj(i) (w(i))> .

For the remainder of this paper, we abuse notation by replacing K(x,w) with its fi-
nite dimensional spectral approximation K(x,y) given by equation (5). We also iden-
tify each stochastic subspace Q) with its parameterization S®. Therefore the model-
ing error between the true stochastic solution and its finite dimensional approximation
|lu(x,w) — u(x,y)|| is neglected.

2.2 Domain Decomposition

We use the domain decomposition approach described in [21] to restrict the model problem
into non-overlapping subdomains D;, i = 1,...,Np, D = va ] D;, and D; N D; = 0 for
i # j. They may be spatially non—conforming, but conform to the KL regions. Denote the
interface between subdomains D; and D; by I'; ; = 0D; N 0D;, the union of all interfaces
that touch subdomain D; by I'; = dD;\ 0D, and the union of all interfaces by I' = U# iTij
The domain decomposition can be viewed as a coarse grid on D. Note that subdomains may
be different from KL regions. We assume that each KL region is a union of subdomains.

System (2) holds within each subdomain D;, but additionally the pressure and the nor-
mal velocity components must remain physically continuous across the interfaces. Equiva-
lently, we seek (u;,p;) such that for i = 1,..., Np and for p-almost every y € S,

Vou,=f in D;, (6a)

u; = —K(x,y)Vp; in D;, (6b)

Pi = gD on 0D; NT'p, (6¢)

u;-n=gy on 0D; NT'y, (6d)

Pi = Dj onlj;, i# ] (Ge)
u;,-n;+u;-n; =0 only;, i#j, (6f)

where n; is the outer unit normal to 0D;.



2.3 Variational Formulation

In the physical dimensions, define the space V;(D;) = H(div; D;) = {v € (L*(D;))? | V-v €
L?(D;)}. Then the deterministic Sobolev spaces for i = 1,..., Np are:

Wi(D;) = L*(D;), V](D;) ={v € H(div;D;) | v-n=~on dD;NTy},
Np Np
and globally: ~ W(D) = Wi(D;), V(D) =P V](Dy),
=1 =1

where v € L?(I'y).2 The global velocity space V(D) is not continuous in the normal
direction across subdomain interfaces I, so it is not a subset of H(div; D). To account for
this, we introduce a Lagrange multiplier space that has a physical meaning of pressure and
is used to weakly impose continuity of the normal velocities:

M(D) ={ue HY*() | plr, € (Vi(D;) -ny)*,i=1,...,Np}.

Since our goal is to compute statistical moments, we define the space

1/2
Ly(S) = {V ;S —R?| </§ ||V(Y)|2P(Y)d3’> < 00},

and take its tensor product with the aforementioned deterministic spaces to form the
stochastic spaces

W(D,S) =W(D)® LXS), V(D,S)=V'(D)®LS), M(,S)=M()® LS).

Whenever the explicit dependence in parentheses is omitted, it is implied that we mean the
stochastic spaces, e.g. W = W(D,S). We equip the stochastic pressure and velocity spaces
with the mean norms

Np
L[ v 0 w2)ix) oty = 2 I, ] 1917 =3 VIR
¢ i=1

/ </D w2dx> py)dy = B [Jw]]

Multiplication of system (6) by appropriate test functions and integration by parts gives
the following stochastic dual mixed variational formulation: Find u € VI~ p € W, and
A € M such that fori=1,..., Np,

Lo wvnpay = [ [0 -v)n ~ v,

VI3

!l

— (vnigp)apr, | p(¥)dy W eV (Ta)
[ wwnpy)iy = [ (7w)n0()ay vweWw,  (1h)
S S
Np
/S > (ui-ni, p)r,p(y)dy =0 VYueM.  (Tc)
=1

2Note that the condition v - n = v requires slightly higher regularity than the usual for normal traces of
functions in H(div; D).



The extra condition (7c) enforces weakly the flux continuity lost across the interfaces in the
domain decomposition.

3 Discretization

We begin with a semidiscrete approximation to the weak solution (u, p, \) of the stochastic
variational formulation (7), based on the MMMFEM in the physical dimensions. This is a
multiscale approach that combines a local fine scale discretization within each subdomain
with a global coarse scale discretization across subdomain interfaces. We then employ
the stochastic collocation method, using a tensor product or sparse grid Gauss-Hermite
quadrature rule in the additional stochastic dimensions, to form the fully discrete solution.
This non-intrusive approach decouples the (d + Nierm )-dimensional stochastic problem into
a sequence of independent d-dimensional deterministic problems, which are realizations in
stochastic space and function evaluations in the quadrature rule.

3.1 Finite Element Approximation

Each subdomain D; is partitioned into a local d-dimensional quasi-uniform affine mesh
Thi- The faces (or edges) of these meshes are spatially conforming within each subdomain,
but are allowed to be non-conforming along subdomain interfaces. Let the maximal element
diameter of 73, ; be h;, and let the global characteristic fine scale diameter be h = maxﬁi 5 hy.
Denote the global fine mesh by 7;, = Ulj\g Thi- Let Vi i(D;) x Wy i(D;) C Vi(D;) x Wi(D;)
be a mixed finite element space on the mesh 7j; such that Vj,;(D) contains piecewise
polynomials of degree k and W}, ;(D) contains piecewise polynomials of degree I. Examples
of mixed finite element spaces can be found in [9]. The numerical tests in this paper
use the lowest order Raviart-Thomas space [29] on rectangular elements in 2-D and brick
elements in 3-D. Globally, the discrete pressure and velocity spaces for this method are
Wi(D) = @5 Whi(D;) and Vi,(D) = @~ Vi,i(D;). We further define V) (D) = {v €
Vi(D)|v-n=Qpyon 'y} where Qy, is the L?-projection operator onto the normal trace
of the velocity space, see (10).

Each interface I'; ; is partitioned into a coarse (d — 1)-dimensional quasi-uniform affine
mesh denoted 7p; j. On this mesh we define the mortar space that weakly enforces conti-
nuity of normal fluxes for the discrete velocities across the non-matching grids. Let the
maximal element diameter of this coarse mesh be H;;, and let the global characteris-
tic coarse scale diameter be H = maxi<;<j<n, H; ;. Denote the global coarse mesh by
T = U1§i<j§ND T, ;- Let My, j(T;;) € L*(I'; ;) be the mortar space containing contin-
uous or discontinuous piecewise polynomials of degree r,s where r > k + 1. Globally, the
mortar space for this method is My (I') = @<, j<n, Mn,i,j(Li;). Notice that this is a
nonconforming approximation, as My (T') € M(T).

Under these finite dimensional subspaces, the semidiscrete stochastic multiscale mortar
mixed finite element approximation of (7) is to find uy : S — Vi¥(D), pp : S — Wj(D),



and Ay : S — Mg (T") such that for i = 1,..., Np and p-almost every y € S,

(K~ "'up,v)p, = (pn, V- V)b,
— (v ni, Am)r, — (V- 0i,gpYop,r, YV E V) (Di),  (8a)

(V *Up, w)Dl = (fv ’UJ)Di Vw € Wh,i(Di)7 (Sb)
Np
> (ni-ng, g, = 0 Vpe Mp(T). (8¢
=1

In this formulation the pressure continuity (6e) is modeled via the mortar pressure function
A, while the flux continuity (6f) is imposed weakly on the coarse scale via (8c). For the
above method to be well-posed, the two scales must be chosen such that the mortar space
is not too rich compared to the normal traces of the subdomain velocity spaces.

Assumption 3.1. Assume there exists a constant C independent of h and H such that

lulr,; < CULniulr,; + 1Cnjullr, ), Yme My(l'), 1<i<j< Np, (9)

where Qp; L3(T;) — Vi n4lp, is the L?-projection operator onto the normal trace of the
velocity space on subdomain i, i.e. for any ¢ € L*(T;),

(¢ — Qnid,v-ny)r, =0, Vv e V(D). (10)

3.2 Stochastic Collocation

Let m (or m) be a multi-index indicating the desired polynomial degree of accuracy in the
stochastic dimensions. The stochastic collocation method approximates the semidiscrete
solution (up,pn, Ag) by an interpolant Z,, in the stochastic dimensions. It is uniquely
formed on a set of Ny, stochastic points {yx} that form a Haar set in S, where Ny, is a
function of m. More precisely the fully discrete solution is

uh,m(xu y) = Imuh (X7 y)7 ph,m(xu Y) = Imph (X) y)7 >\H,m (X7 Y) = Im)\H (Xu Y)

Let {Ly{ylf} (y)} be the Lagrange basis satifying {Ly{f} (¥j)} = k. Then the fully discrete
solution has the Lagrange representation

g

eal

(uh ms Ph, ma)\Hm X y Z {k}>ph }7)%9})(3()[4%}(}’),
k=1

where (u}{Lk}, p,{lk}, )\gg}) is the evaluation of semidiscrete solution (uy, pp, Af) at the point in
stochastic space yg. In other words, for each permeability realization K {k}(x) = K(x,yx),

k=1,..., Nya, we solve the deterministic problem: find uik} € ViN(D), p}{bk} € Wp(D),

10



and /\gg} € My (T) such that fori =1,...,Np,

(K™ vip, = (" V- v)p, — (v ni, A,

— (v n4,9p)ap,nrp Vv e V) i(Di), (11a)

(V-u™ w)p, = (f,w)p, Vw € Wii(Di),  (11b)
Np

S nimr, = 0 Vpe My(T).  (llc)
i=1

The Lagrange representation of the fully discrete solution is plugged into the expectation
integral (1) to form a quadrature rule. For example, the pressure expectation is computed
by

Nreal Nreal

Elppm](x) = / P (%, 7)p(y)dy = / S oL ey = 3w x),
S S p—1 k=1

where the weights are given by w;{f} = Js Lyf}(y)p(y)dy.

The choice of collocation points {yx}, i.e. the type of quadrature rule, produces different
types of stochastic collocation methods. This paper considers two types of grids: tensor
product and sparse grids. Both types of grids are constructed from one-dimensional rules,

where the points in dimension S;Z) are the zeros of orthogonal polynomials with respect to

the L%(Sg-i))—inner—product. Since we are using Gaussian random variables, we choose the
zeros of the “probabilist” N(0,1) Hermite polynomials

m/2 .
_ (2y)m 2k
Hy(y) = m! g—o (fl)km-

Denote the sets of one-dimensional weights and abscissae for H,,(y) by
Wim) = {wk,...,w™} and H(m)={hl,...,n"},

and notice that when m = 2k — 1 is odd, the point hY, is the origin. These weights and
abscissae can easily be computed with a symbolic manipulation software package. Alterna-
tively, one may convert a table of rules for the “physicist” N(0,1/2) Hermite polynomials
listed in [3] by dividing the weights by factor of /7 and multiplying the abscissae by a
factor of /2.

3.3 Collocation on Tensor Product Grids

In tensor product collocation, the polynomial accuracy is prescribed in terms of component
degree, i.e. independently in each stochastic dimension. This allows for very easy construc-
tion of anisotropic rules, accurate to different polynomial degrees in different stochastic
dimensions. Unfortunately, the number of points in tensor product rules grow exponen-
tially with both the polynomial accuracy and the number of dimensions. This is commonly

11



referred to as the “curse of dimensionality”. Therefore, this inherently limits their usage to
problems with a relatively low number of stochastic dimensions, i.e. about a dozen or less.

If we choose Ncopi(7,j) collocation points in stochastic dimension j of KL region i, then
m = (Neon(?,7))s is the Nieym-dimensional multi-index indicating the desired component
degree of the interpolant in the stochastic space S. The corresponding anisotropic tensor
product Gauss-Hermite interpolant in Nierm-dimensions is defined by

T F(¥) = (Tm1) © -+ @ Ten(Nyeu) F ()
m(l) Nterm

k
= Z Z f hkl J\Zt]e\ggrm))Lfrll(l) (yl) e Lr;v(t]e\;;:rm)(y]vtelm)

ki=1 kN =1

The set of abscissae for this rule is

Nterm Nq Nterm(z
= ® H(m(k)) = ® ® H Coll { ])) ) (12)
k=1 i=1
which interpolates the semi-discrete solution into the polynomial space Py = [, Pk in
the stochastic dimensions. The tensor product weight for the point (hf;(l), e hijlv(tf\;t‘:rm))
is given by
Ntcrm

= H1 W -

In a fixed stochastic dimension, the one dimensional Gauss-Hermite quadrature rules are
accurate to degree 2m — 1.

Remark 3.1. By (12), the global Nyepm-dimensional tensor grid is the tensor product of Ng
smaller tensor product grids of dimension Niepm(i). Therefore, the number of permeability
realizations local to the KL region i and global to the entire domain are:

Nterm NQ
real H Ncoll i .] and  Nyeq = H Nreal(i)a respectively.
i=1

In the case of isotropic tensor product collocation where each stochastic dimension
S;Z) has the same polynomial accuracy m = (m,m,...,m), the tensor grid points are

7T(m) = %gjfm H(m) and the number of realizations reduces t0 Nyl (i) = mNerm() and
Nreal = m e,

Remark 3.2. We index the tensor product collocation points with a natural ordering. For

hther'm

. . k
the tensor grid point (hni(l), s e (N

given by

), its global collocation index k € {1,..., Nyeq} is

Ntenn —

k—k1+Zka (13)
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Figure 1: A Gauss-Hermite sparse grid (left) versus a Gauss-Hermite tensor grid (right)
with a comparable number of points on each axis.

Sparse Grid (2 Stoch. Dimensions, Level Max = 4), 221 pts. Tensor Grid (2 Stoch. Dimensions, Ncoll = 31), 961 pts.
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3.4 Collocation on Sparse Grids

Sparse grids were first used for high dimensional quadrature by Smolyak in 1963 [31] and
have been applied to stochastic collocation in such works as [36, 27]. In sparse grid collo-
cation, the polynomial accuracy is prescribed in terms of total degree. Sparse grids rules
are known to have the same asymptotic accuracy as tensor product rules, while requiring
far fewer points as the dimension increases. This property is essential for coping with the
curse of dimensionality. Therefore sparse grids are applicable for problems with higher di-
mensional noise, i.e. up to several hundred stochastic dimensions. A picture of comparable
sparse grid and tensor grid rules is shown in Figure 1.

Sparse grid rules are linear combinations of tensor products on a family of nested one
dimensional rules. They are constructed hierarchically to have the property that the total
polynomial degree is a constant independent of dimension. They are described in terms of a
level £ ax, Where the Nig-dimensional sparse grid quadrature rule of level £;,., is accurate
to degree (2 - lpax + 1).

Each level between /i ax and £pin = max{0, fypax — Nterm + 1} is an integer partitioned
into Nierm non-negative parts. These partitions form multi-indices p = (p1,- -+, PNierm )
Ip| = >_ pi, denoting the levels of one dimensional rules to use for each stochastic dimen-
sion. In our paper, the one dimensional abscissae of level p; are the Gauss-Hermite points
H(2Pit1 —1). Level 0 starts with a single point, and the number of points doubles plus one
on each subsequent level.

Let the multi-index m = 2P*! —1 denote degree for each partition p. The corresponding
isotropic sparse grid Gauss-Hermite interpolant in Nierm-dimensions is defined by

6ty = Y <—1>€max-P'-(Nwrm‘1>.zgeﬂy).

Cmax — [P
eminS‘D'SEmax max ’ ‘
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The set of abscissae for this rule is

Nterm
S(Eminagmaxa Nterm) = U ® H(2pi+1 - 1) (14)

Kming‘p| S‘gmax i=1

Remark 3.3. The set of local permeability realizations on a sparse grid for a particular KL
region satisfies the relationship

S(gmma Emaxa Nterm) Q 5(07 gmama Nterm(l)) K- & 8(0, gmaxv Nterm(NQ)) .

-~

Projection into S(1) Projection into S(N@)

Note that £, = 0 for all the local sparse grids, unlike the global sparse grid.

The points in (14) are weakly nested because the origin is the sole value that is repeated
in each one dimensional rule. Taking tensor products of one dimensional rules produces
many repeated points that contain the origin in one or more of its components. There
are both pros and cons to skipping these repeated abscissae. On the one hand, fewer
function evaluations in the quadrature rule means fewer realizations to solve in (11). On
the other hand, extra book-keeping is necessary for indexing the points and calculating their
collocation weights.

In Algorithm 1, we give an efficient method that provides a natural ordering for the
points in a Gauss-Hermite sparse grid, which skips repeated points.

Algorithm 1 - A natural ordering for sparse grid points.
1: input: Global Index g

2: j=0
3: for £ = limin, . . ., fmax do {Loop over levels}
f+ Nierm — 1)! "

4: fori=1,..., (a—(FNt::m — 1)‘) do {Loop over partitions}
5 part <« (p1, ..., DNer )y~ M« 2P+ 1 L The i-th multi-index}
6: if ¢ =l then add part to PartList
7: for k=1,...,][, m(a) do {Loop over points}

. k KNt orm . . .
8 point «— (hni(l), cee hnjl\?Nterm)) k{The j-th point using (13)}

. pi, iR 40
9: t Ply--ns D here p; = m(i)

part «— (p1 DNyerr, ) Where p; {O, i hlffl(i) _o
10: if (¢ = liin and part € PartList) then {Repeated point; skip it}
11: else if (¢ > lyi, and part # part) then {Repeated point; skip it}
12: else j = j + 1 {Unique point; count it}
13: if (j = g) then return point, part
14: end for
15:  end for
16: end for
Suppose that a sparse grid point (hf; (1) hﬁjlv(tf\;tf:rm)) occurs in a set of partitions P. If

it is used in a single function evaluation with subsequent occurrences skipped by Algorithm
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1, then its quadrature weight must be calculated by the formula

Nerm - Mo ;
Sl (e ) T by

peP lmax — |P| P

Note that in a sparse grid rule, quadrature weights may become negative.

4 Error Analysis

In this section we present a priori error estimates for the solution to the stochastic MMM-
FEM. As in previous stochastic collocation papers, see e.g. [8, 36, 27, 18], the error is
decomposed into deterministic and stochastic errors, see Theorem 4.1. Furthermore, we
employ a duality argument to show superconvergence for the pressure, see Theorem 4.2.

Note that throughout this entire section, we tacitly assume that Assumption 3.1 holds.
To avoid technical details for the approximation of the Neumann boundary condition, we
further assume that gy € V(D) - n.

We start with some definitions. We define the space of weakly continuous velocities by

Np
Vio(D) = {V € V(D) | > (vlp, -mi,mr, =0 Vpe MH(F)} :
=1

Recall that for any of the standard mixed spaces, V-V, ;(D) = W, ;(D). Let, for e > 0, II, :
(H*(D;))* N V(D) — V3 (D), Hq|p, = I;q, be the standard MFE projection operators.
A projection operator Ty : (HY/?7(D))¥ "' V(D) — V},0(D) is defined in [5, 6], satisfying

(V- (Ilpqg — q),w)p, =0, Ywe Wy;(D;), (15a)

Np

[TIog — Hg| < CZ lall41/2,0,A"HY?, 0<r<k+1,  (15b)
i1
Np

Moa—all < CY llallyph?HY?, 1<r<k+1, (i5c)
i1

Np
Y la
=1

Note that (15d) is not explicitly stated in [5, 6], but follows easily from the results there.
For any ¢ € L?(D), define its L?(D)-projection ¢ onto Wy (D) by

IN

1.D; - (15d)

N 1/2
(Z ||H0qH12LI(div,Di)>

1=1

(p—¢,w) =0, Ywe Wy(D).

Similarly, let P denote the L?(T')-projection onto My (T'). Let Z§ be the nodal interpolant
operator into the space Mf;(I') which is the subset of continuous functions in Mg (I"), where

15



we use the Scott-Zhang operator [30] to define the nodal values of ¢ if it doesn’t have
poinwise values. We will make use of the following inequalities:

14 = Zller, < Cllllsr H*™, 0<s<r+1, 0<t<1, (16a)

1 = Pupll-er; < CllY s, H*, 0<s<r+1, 0<t<1, (16b)
le — ¢l < Cligllen”, 0<t<li+1, (16¢)

laller: < Cllalles1/2,0,5 0<t, (16d)

v -nr, <Ch™V2|v|p, Vv € Vy,i(D;), (16e)

(boa-mr, < Cllllir, lallz @i, (16f)

I(a = iq) - 0] —.r; < Cllglls,r, ", 0<s<k+l 0<t<k+1, (16g)
where | - |[|_¢ is the norm of H™!, the dual of H' (not H{). Bound (16a) is found in [30],

the L?-projection approximations (16b), (16¢), and (16g) are found in [11], the nonstandard
trace theorem (16d) is found in [22], the trace inequality (16e) is found in [5], and the bound
(16f) follows from the normal trace inequality for H (div; D;)-functions.

It is easy to see that (8) is equivalent to finding uy, : S — V‘Z%(D) and pp, : S — Wy (D)
such that for p-almost every y € S,

ND ND
> (K", v)p, = (pn, V- V)p, — (v 0y, gp)r, ¥V € Vi (D), (17a)
=1 =1
Np Np
> (V-upw)p, =Y (f,w)p, Yw € Wi (D). (17b)
=1 =1

We form error equations by integrating system (17) in S against the PDF, and subtracting
it from system (7):

/Z Lu—uy), )Dip(Y)dy:/S[Z(ﬁ_ph,V'V)Di

—(p,vemin|py)dy Vv EVi(D),  (18a)

/ Z (w0 —up),w) p,ply)dy = 0 vw € Wi(D).  (18b)

Recall that k,l,r,m denote the polynomial degrees of approximation for the velocity
space, pressure space, mortar space, and collocation interpolant, respectively. In all mixed
methods we consider, [ = k or [ = k—1. The next result follows easily from the deterministic
multiscale bound on the velocity, which is proved in Theorem 4.1 in [6].

Lemma 4.1. There exists a positive constant C independent of h and H such that for
0<¢q¢<I+1, 1<t<k+1,and0<s<7r+1,

lu— il myerze < CUlPlgsrrzpyemze ™ + 1l mperzeh’
Hlull g1z pypr2e h HY?),
IV - (u—wup)llrzpyerzsy < ClIV-ullgep)erzsh? 1<i< Np.
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For the pressure bound we need the following inf-sup condition.

Lemma 4.2. There exists a positive constant v independent of h and H such that for all
w:S — Wy(D),

Js 2228 (V v, w)p, p(y)dy
sup
vi§—V) (D) [vlv

> 7lJwllw-

Proof. Let w: S — Wj(D). Consider the auxiliary problem, for p-almost every y € S

V-(,y)=w(,y) in D, 9(,y)=g(,y) ondD,

where g € (H'/2(9D))% is constructed to satisfy Jopgn= [,wandg-n=0onTIy. More
precisely, we take g = (fD w) on, where p € C%(0D) is such that faDSD =1land ¢ =0
on I'y. Clearly ||lgll;/2,0p < Cllwl]. It is known [16] that the above problem has a solution
satisfying

[l < C[wll + llglli/2,0p) < Cllwl]. (19)
Then
L(V-v,w)p,ply 5(V - o, w)p,p(y)dy
oup L2 > o2t > sl
I Vv Mol
where we have used (15a), (15d), and (19) for the last inequality. O

From Lemma 4.2, we can derive a multiscale bound on the semi-discrete pressure.

Lemma 4.3. There exists a positive constant C independent of h and H such that for
1<t<k+1,and0<s<r+1,

lp = pallw < CUlpl gsrir2pyorze H ™ + ulla pyer2eh’ + 1all gz pyerzeh HY?).

Proof. Taking w = p — pp, in Lemma 4.2 and using (18a) gives

Jo SSNE(V v, D — pr)p,p(y)dy

N 1
D — pallw < ; sup

viS—VY (D) vy
e RSB s wn) = T v e nan] ey)dy
v v:S—»V0 o(D) ||V||V

<C <||u —upll2(pyer2es) + ZHS Y2|Ip grs r ®L2(S)>

=1

< Cllpllgsrrr2morz@H 2 + Il gepyarz@h + [ull ge sz pygrzeh '),

where we have used (16a), (16d), and Lemma 4.1 in the last two inequalities. The proof is
completed using the triangle inequality and (16c¢). O
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Theorem 4.1. Assume that the solution (u,p) to (2) is sufficiently smooth, so that the
norms that appear in Lemma 4.1 are well defined. Then there exists a positive constant C
independent of h and H such that for 0 < ¢ <Il+1,1<t<k+1, and0<s<r+1,

u—wpmllv + 1P = promllw < CHSY2 + b 4+ bt + RPHY?) 4 9. (20a)
For tensor product grid collocation,
Nq
n<C Z exp (—ci/mi) , (20b)
i=1
For sparse grid collocation,

exp(_O'Nterm2€maw/Nmm)7 fOT’ large gmax

eXp<_Ue 10g2 (Emait))v fO?" large Nterm : (200)

n<clo){

In the above ¢; and o are positive constants that depend on the smoothness of K in S.

Proof. The left hand side of (20a) can be decomposed into deterministic and stochastic
€rTors:

[u—uwpmllv + P —Prmllw
< ([a=wllv + llp = pallw) + (lap — Zmwnllv + lpn — Znpnllw)

The deterministic error is bounded in Lemmas 4.1 and 4.3. Assuming K is smooth enough
in S, which is true for the KL expansion, the estimate of the stochastic error in the case
of tensor product grid collocation (20b) can be found in [8], and in the case of sparse grid
collocation (20c) can be found in [27]. O

In the next theorem we establish superconvergence for the pressure.

Theorem 4.2. Assume that the problem (2) is H?-elliptic regular. Under the assumptions
of Theorem /.1, there exists a positive constant C independent of h and H such that for
0<g<I+1,1<t<k+1,and0<s<r+1,

16— phanllw < CCH*FY2 + h9H + h'H + W H??) 4, (21)
where 1 is defined in Theorem 4.1.

Proof. Consider the following auxiliary problem in mixed form. For p-almost every y € S,

V-(,y) =D prm in D, (22b)
p(y) =0 on I'p (22¢)
YP(y) n=0 on 'y . (22d)
The H?2-elliptic regularity implies
leC,¥)ll2 < ClIp = prmll- (22e)
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We have

16—l = /S (B = Dhoms D — D) p(y)dy

- /S (V4,5 — ) + (B — Proms o — Toupn)] ply)dy

= I+1I.
Applying the Cauchy-Schwarz inequality,

LI < ||p — prmllwlpn — Zopnllw = 116 — Phom|lw 1

Taking v = Ilpe) € ngO(D) in (18a) and using (15a), we have
Np
I= /SZ(V'HO'l,b,ﬁ—ph)DiP(Y)dy
i=1

Np
= /SZ [(K_l(u —uy), o®) p, + (p — Pup, Moty - ni)r, | p(y)dy by (18b)
=1

=11 + 1.

We can break up I into three terms by
Np
I = /SZ [(Kﬁl(u —uy), o —)p, — (u—up, Vo)p, | p(y)dy
i=1

Np
- /SZ [(K_l(“ —w), ot —9)p, + (V- (u—wp), 0 — §)p,
=1

—((u—up) -nj,p— Ifq@ri} p(y)dy
= Ill -+ 112 — 113.

Upper bounds for Ii1, I12, I13 can be obtained using the Cauchy-Schwarz inequality.

1/2 1/2
hh<c ( /S Ju— uhHQp(y)dy) ( /S Mot — w\?p(y)dy)

< ovat fu=wly ([ lwltoma) - by (15¢)
< OVRE [[u=willv 16— prmllw by (22¢), (22a).
Np 1/2 1/2
L <C (/SZ; [V (a— Uh)llﬁp(:s’)dy> </S llo — @IIZp(y)dy>
< Chllu—up|v[Ip — prmllw by (16¢), (22e).
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Np

Np 1/2 1/2
L3 <C </SZ Ju - Uh@;(dw,D,.)p(y)dY> </SZ e If{sollf/z,r,.p(Y)dy> by (16f)
=1

=1
< CHllu = v [Ip — prmllw by (16a), (16d), (22¢).

We bound Iy as follows:
Np
Iy = /s ; [(p — Pup, Moy —ILap) -n; + (Iiep — ) -n; + 9 - Hz‘)Fi}P(Y)dy
Np
< 132 1o = Pl (1000~ )l + 0T )il
+lIp = Pupll 1o |9 nill o, | p(y)dy by (160

Np
<O [ [Ipllor, 17 (1Ms — D712 5 20
=1

 Iplor T2 o, | () dy by (16b), (16¢), (16g)
Np
< C [ S [Ipllrs o, (1900, + bl 1)
=1
Il 12,0, 2l o3)dy by (16d), (15b)

Np 1/2
< CH*1/2 (/S > ||P’§+1/2,DiP(Y)dY> 1D — Dhm |-
=1

The proof is completed by combining the above inequalities and using Theorem 4.1. O

5 Collocation-MMMFEM Algorithms

To form the fully-discrete stochastic solution to (11), each realization requires solving a
deterministic problem using the MMMFEM. For these we employ a parallel substructuring
domain decomposition algorithm [21, 5, 6] that reduces the global problem to a coarse scale
interface problem for a mortar pressure. In this section we present three algorithms based
on combining stochastic collocation with different implementations of the solution of the
interface problem.

We begin by describing the reduction to an interface problem. We decompose the
solutions into two parts

u}{f} = uZ’{k}(AH) + ﬁ;ik} and pik} = pZ’{k}(AH) + ﬁik}.

For each realization £ = 1,..., Nyea, the pair (uZ’{k},pZ’{k}) € V(D) x Wy(D) solves

subdomain problems with zero source and outside boundary conditions, and has )\gﬁ} as a
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Dirichlet boundary condition along I', i.e. for i =1,..., Np,
(W)™ v)p = ™ Vv = = (v oA W e VD), (280)
(V-u ™ w)p, = 0 Yw € Wyi(D),  (23b)
and the pair (ﬁik},ﬁ}{bk}) € VI¥(D) x Wp(D) solves subdomain problems with source f,

boundary conditions gp and gy on 9D, and zero Dirichlet boundary conditions along T,
i.e. fori=1,...,Np,

(K a8 vyp, — @ Vo v)p,= — (v ni,gp)opiary, Vv € VD), (24a)
(v-u™ w)p, = (f,w)p, Vw € Wyi(D).  (24b)

Notice that systems (23a)—(23b) and (24a)—(24b) are completely decoupled from each

other across all subdomains. The former requires a mortar function )\gf} while the latter
does not. Their sum equals (11a)—(11b), so what remains is to enforce equation (1lc),
which couples the subdomains together. This leads to the variational interface problem:
find A € My (T) such that for all k= 1,..., Nyea,

B O ) = o (), Yie Mp() (25)

where the bilinear forms bl : L*(I) x L*(T) — R, bly}:L*(Iy) x L*(T';) — R, and linear
functional ggﬁ}:L2 (T') — R are defined by

ND ND
ol ) = Sl O ), o O ) = (—ap T O) ns i, gl ) = S @ ng,
i=1 =1

Note that bgg} measures the jump in flux across across subdomain boundaries and requires
interprocess communication, while bgﬁ measures the flux on a single subdomain.
It is shown in [5] that if Assumption 3.1 holds and I'p # ), then bgﬂ} is symmetric and

positive definite on My (T"). Therefore we use the Conjugate Gradient (CG) algorithm to
solve the interface problem (25). It is convenient to rewrite (25) using an operator notation:

find A € My (T) such that for k= 1,..., Neal,
BN =i, (26)

where the linear operators ng} My (1) — Mgy(T), B}{fl} My () — Mp;(I';), and the
vector ggg} € My(I') are defined by

Np
BIA=3"BiIN, (B wr, =05 (0 w) Vi€ Mug, (o mr = gl (1) Vi e My,

g 52
i=1

The operator B}f} is known as the Steklov-Poincaré operator [28].

The dominant cost for solving the interface problem (26) in the MMMFEM is the
solution of Dirichlet-to-Neumann subdomain problems (23) on each CG iteration.

The three collocation-MMMFEM algorithms are presented below. We measure their
computational cost in terms of the number of subdomain solves.
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5.1 Collocation with Traditional MMMFEM

The first method we consider is based on the traditional implementation of the MMMFEM.
It requires one subdomain solve (23) per interface CG iteration. We call this Method S1
and present it in Algorithm 2.

Algorithm 2 (Method S1) - Collocation without a Multiscale Flux Basis.
1: for k=1,..., Nya do  {Collocation Loop}
2. Generate permeability realization K{¥} corresponding to global index k
3:  Solve interface problem (26) using the Traditional Implementation of the MMMFEM
4:  Multiply solution by collocation weight and sum to statistical moments
5. end for

In Step 3 of Algorithm 2, the interface iteration can be summarized as follows. The

vector ggc} is formed by solving system (24). Starting from an initial guess, we iterate until

convergence on the value of )\gc} using the Conjugate Gradient algorithm. On each CG

iteration, the action of the operator B}{f} is performed in four steps:

(a) Project mortar data onto subdomain boundaries: 7; = Qh’i()\gﬁ),

(b) Solve the subdomain problem (23) with Dirichlet boundary data ~;,

(¢) Project the resulting fluxes onto mortar space: & = —Q;{,i(u:{k} (7i) - ny),

Np
(d) Compute flux jumps across subdomain interfaces: ng})\gc} = Z &
1=1

{k}
H

Steps (a)-(c) evaluate the action of the flux operator By;; and are done by every subdomain

in parallel. Step (d) evaluates the action of the jump operator Bl{f} and requires interprocess
communication across every interface.

Note that the number of CG iterations for solving (26) grows with the condition number
of the problem. In the traditional implementation of the MMMFEM, so does the number
of subdomain solves. When this method is coupled with the stochastic collocation method,
this cost is multiplied by the number of realizations. The computational cost for each
subdomain is given by

Nreal
Number of Solves for
< Method S1 > = D (Niser(k) +3).
k=1

The three additional solves at each realization come from solving (24) to form the right
hand side in (26) and recovering the solution in the interior after the convergence of the
CG iteration.
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5.2 Collocation with a Deterministic Multiscale Flux Basis

An alternative implementation of the MMMFEM was recently presented [19] that forms a
multiscale flux basis. Each subdomain solves a subdomain problem for each one of its mortar
degrees of freedom before the interface iteration begins. The solutions to these problems
form a basis of coarse scale flux responses containing all the necessary information to solve
a deterministic problem. No interprocess communication is required in the formation of
the basis. Linear combinations of the basis are used to evaluate the flux operators during
the interface iteration so that no additional subdomain solves are necessary, except one or
more additional solves at the conclusion of the iteration to recover the fine scale solution.
The computational cost is a fixed and controllable quantity, and therefore does not worsen
with the condition number of the problem. Indeed, it was shown to be more efficient
than the traditional implementation in most cases for deterministic problems. This gain in
computational efficiency increases with the number of subdomains, and also in cases where
a basis can be computed once and then reused many times.

This approach can be coupled to stochastic collocation method in a straightforward way
by forming a new deterministic multiscale basis for each realization. We call this Method
S2 and present it in Algorithm 3.

Algorithm 3 (Method S2) - Collocation with a Deterministic Multiscale Flux Basis.
1. for k=1,...,Nyea do  {Collocation Loop}
Generate permeability realization K} corresponding to global index k

2
3:  Compute multiscale flux basis for global index k

4:  Solve interface problem (26) with MMMFEM using the basis from Step 3
5

6

Multiply solution by collocation weight and sum to statistical moments
: end for

In Step 3 of Algorithm 3, the formation of the multiscale flux basis can be summarized
as follows. For each subdomain D;, i = 1,...,Np, let {chl}NdOf( ) denote a mortar basis
for My ;(I';). Their individual flux responses for realization k are computed by evaluating

the action of the operator Bl{qkl} on these functions. This is done via steps (a)-(c) from the
interface iteration, i.e. for j = 1,..., Ngo(1),

(a’) Project a mortar basis function onto subdomain boundary: ’yi(j) = Qh,i(ﬁbg)i)u

(b’) Solve the subdomain problem (23) with Dirichlet boundary data fyl-(j ),

(¢’) Project the resulting flux onto mortar space: @bHZ{k} -or i(u o {k}( U )) ‘1;).

The functions {1/) i Z{k}}]\fdof(Z are saved to form the multiscale flux basis for subdomain D;
on global realization k. They are discarded and recalculated for realization k + 1.
In Step 4 of Algorithm 3, the multiscale flux basis is used in the interface iteration as

follows. Suppose
Naot(i)

= 5 e
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is the current mortar data on a CG iteration. Since the flux operator ngl} is linear, Steps
(a)-(c) in the traditional implementation are replaced with the linear combination

Ndof(i)
k k i),{k i),{k
I s SR
7j=1

Then Step (d) proceeds as usual.
The computational cost for each subdomain D; is given by

Number of Solves for ]
< Method S2 > = (NdOf(Z) + 2) * (Nreal)~

Note that each subdomain performs a different number of solves because they may have a
different number of mortar degrees of freedom.

5.3 Collocation with a Stochastic Multiscale Flux Basis

The main idea behind the multiscale flux basis implementation is to form a basis containing
all the necessary information to solve the interface problem by solving as few linear systems
as possible. In Method S2, if each realization saves just a few solves, then when performing
several thousand realizations the overall savings will be great compared to Method S1.

The dominant cost in Method S2 is comuting the multiscale flux basis for each global
realization. In the setting of nonstationary random porous media with localized KL regions
throughout the domain, one can get even greater computational savings with the formation
of a stochastic multiscale flux basis. Recalling Remarks 3.1 and 3.3, both tensor product
and sparse grids have a repeated local structure in the KL regions. A stochastic multiscale
flux basis can be formed by looping over all local realizations of a subdomain’s KL region
in a precomputation loop before the stochastic collocation begins. We call this Method S3
and present it in Algorithm 4.

Algorithm 4 (Method S3) - Collocation with a Stochastic Multiscale Flux Basis.
1: for ¥ =1,..., Nyeat(j) do  {Precomputation Loop}

2 Generate permeability realization corresponding to local index &’

3 Compute and store multiscale flux basis for local index &’

4: end for

5. for k=1,..., Nyea do {Collocation Loop}

6 Generate permeability realization corresponding to global index k

7. Convert global index k to local index ¥ {Using Algorithm 5 or 6}

8:  Solve interface problem (26) with MMMFEM using the basis with local index &’ from

Precomputation Loop
Multiply solution by collocation weight and sum to statistical moments
10: end for

©

The computational cost for a subdomain D; that belongs to a KL region D%)L is given

Number of Solves for ] .
( Method S3 > = (Naot(i) * Nrcar(j)) + (2 * Nreal)-
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Each subdomain performs a different number of solves because they may have a different
number of mortar degrees of freedom and may belong to different KL regions with different
numbers of local realizations. Note that the dominant cost is in the first term and it
is proportional to the number of local realizations Nyeai(j), while the dominant cost in
Method S2 is proportional to the number of global realizations Nyey).

In Step 7 of Algorithm 4, the global to local collocation index conversion is the key
step in being able to perform Method S3. Any algorithm developed for this purpose would
depend on the ordering of the points. For a tensor product grid, recall from (13) that we
chose to follow the natural ordering by 1-D point first, local dimension next, and KL region
last. In Algorithm 5, we give a global to local index conversion algorithm for this ordering.
It is very similar to the algorithm one uses to convert an integer from one base into another,
with the modification that each digit has a different base.

For a sparse grid, the indexing of the points is far more complicated than a tensor product
grid due to its hierarchical construction and skipping of repeated points. Nevertheless, it
is still possible to formulate a global to local index conversion that is more efficient than a
brute force approach. Recall from Algorithm 1 that we chose to follow the natural ordering
by level first, followed by a partition of that level into Nq parts, followed by 1-D point,
and global dimension last. In Algorithm 6, we give the global to local index conversion
algorithm for this ordering. It is a modification of Algorithm 5, where the global point and
partition are truncated, and the indexing scheme is applied to the local dimensions.

Algorithm 5 - Global to Local Index Conversion for a Tensor Product Grid.
1: input: Global Index g, KL region r
2: remainder «— g
3: fori=1,..., Ng do
4:  modulus «— 1
for j=1,...,Nog—i—1do
modulus < modulus * Nyeal (7)
end for
if (Nqg —i+ 1 =r) then return remainder/modulus ~ {Return Local Index}
9:  remainder «— mod(remainder, modulus)
10: end for

6 Numerical Examples

In this section we present four computational examples that illustrate the behavior of the
stochastic collocation Methods S1, S2, and S3 for various nonstationary porous media, see
Figure 2. In each case we test both tensor product and sparse grid collocations. Example
1 is in 2-D with two KL regions and a highly heterogeneous L-shape inclusion. Example
2 is a 2-D checkerboard with four KL regions and demonstrates a procedure for adaptive
mesh refinement in the spatial grid. Example 3 is a 3-D benchmark test with either two
or twenty KL regions, and is a much more computationally intensive problem to solve than
Examples 1 and 2. In these three examples we compare the relative computational efficiency
of Methods S1, S2, and S3 in terms of the maximum number of subdomain linear systems
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Algorithm 6 - Global to Local Index Conversion for a Sparse Grid.

1: input: Global Index g, KL region r
2: point < (h1,...,An,n)
3: part < (P1, -+, PNyorm ) {Using Algorithm 1 with index g}
4: subpoint «— (hﬁ(nl), e hR(T,Nterm(T))
5: subpart < (Pu(r1)s - - s Pr(r,Neerm(r)) 1 Lruncate to local dimensions}
6: [ — 1
7. if (subpoint = 0) then return [ {Special case for 0 partition}
& for{=1,..., 0. do {Loop over sub-levels}
9 fori=1,..., (i'—(i_N]:it::(lg)—_l)l')' do {Loop over sub-partitions}
10: newpart < (qi, -+ Ny (r)) {The i-th multi-index}
11: m — 2newpart+]l -1
12: for j=1,...,[[, m(a) do {Loop over sub-points}
13: newpoint «— (k:f:l(l), e ki]lv(tj\‘,;:r(;))) {The j-th point using (13)}
ce 1.di
14: newpart < (py, ... s PNyermn (r)) Where p; = Pr(ra), ?f k??(i) 70
0, if km(i) =0
15: if (newpart = newpart) then
16: l—1+1
17: if (newpoint = subpoint) then return !  {Return Local Index}
18: else
19: {Repeated point; skip it}
20: end if
21: end for
22:  end for
23: end for

and the maximum total runtime per processor. Finally, Example 4 is a 2-D physical and
stochastic space convergence test with two equally sized KL regions.

Figure 2: Subdomain and KL region layouts for Examples 1-4. Dashed lines represent
subdomain boundaries and shading distinguishes between KL regions.
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The numerical experiments use the covariance function listed in [39]. In three dimensions
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it is given by

(4) (4) (@)

, N - . o
C}@(X’)—() — (o—gﬁ)> exp [_Ian ':ml wa = @] |wz — 33
771 772 773

Here Ug) and n](-i) denote the variance and the correlation length in the j-th spatial dimen-

sion, respectively, for KL region D%)L Since it is separable, equation (3) can be solved in
each KL region semi-analytically. Details can be found in [39, Appendix A]. 3

The numerical experiments were programmed using a parallel FORTRAN flow simulator
named PARCEL [12]. The spatial discretization uses the lowest order Raviart-Thomas
elements on rectangles or bricks. The runtimes were recorded by compiling the code without
optimization using Intel’s ifort compiler and MKL library, and run with MVAPICH2 on a
parallel cluster of Xeon E5430 2.66GHz processors.

6.1 Example 1: L-Shape

Description. This example has Ng = 2 KL regions in the domain (0,1)2. We test a low
number of KL terms with an isotropic tensor product grid and a large number of KL terms
with a level o« = 1 sparse grid. KL region S; is an L-shaped inclusion with a mean value
of E[Y(] = 3.0, Nierm(1) = 3 x 3 = 9 (with tensor grid) and 14 x 14 = 196 terms (with
sparse grid), correlation lengths n](-l) = 0.01, and variance (c(M)? = 1.0. KL region S is
the remainder of the domain with a mean value of E[Y(z)] = 0.0, Nterm(2) =2 x1 =2
(with tensor grid) and Nieym(2) = 2 x 2 = 4 (with sparse grid) terms, correlation lengths
773(2) = 0.1, and variance (c(®)? = 1.0. Flow is induced from left-to-right with Dirichlet
boundary conditions gp = 1 on face {z = 0} and gp = 0 on face {x = 1}, and no-flow
homogeneous Neumann boundary conditions on the other two edges.

The domain for Example 1 is divided into Np = 4 x4 = 16 subdomains. Tensor product
collocation uses a uniform spatial grid, with all subdomains containing 25 x 25 elements,
and continuous linear mortars with 10 elements on all interfaces. Sparse grid collocation
uses a non-uniform spatial grid such that subdomains in KL region S; have 20 x 20 elements,
and subdomains in KL region So have 4 x 4 elements. The interfaces are discretized with
continuous linear mortars, with the number of elements on S; — S, S1 — Sy, and Sy — Sy
interfaces being 10, 4, and 2 elements, respectively.

Discussion. First we test isotropic tensor product collocation with a low number of terms.
Using Ncoi = 2 collocation points in Ny = 9 + 2 = 11 stochastic dimensions requires
a total of Nyea = 2'' = 2048 global realizations and a maximum number of Nyea (i) =
29 = 512 local realizations, giving a global to local ratio of 4.0. Table 2 shows that the
number of linear systems is reduced by 61% with a deterministic multiscale basis and by
90% with a stochastic multiscale basis. However, the runtime is reduced only by 33% and
45% respectively. This is because the use of a multiscale basis in Methods S2 and S3
does nothing to reduce the interprocess communication during the CG iterations at each

3These eigenvalue/eigenfunction computations are performed in each 1-D spatial dimension separately,
and then multiplied together in a nondecreasing series. For this reason, in the numerical results we report
the number of terms in each spatial dimension separately.
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realization of the stochastic collocation loop. Notice that Method S3 took only 11.5 seconds
to compute the stochastic multiscale basis, because the local systems are relatively small
and easy to solve. Plots of the calculated statistics are shown in Figure 3.

Next we test sparse grid collocation with a large number of terms. Using a level {1, = 1
sparse grid in Nierm = 196 + 4 = 200 stochastic dimensions requires a total of N, = 401
global realizations and a maximum number of Ny, (i) = 393 local realizations, giving
the much smaller global to local ratio of 1.02. In this case the number of linear systems
is reduced by 25% with a deterministic multiscale basis and by 26% with a stochastic
multiscale basis. The runtimes, however, remain nearly constant, since the interprocessor
communication dominated the cost for solving the small subdoman problems. Plots of the
calculated statistics are shown in Figure 4.

This example shows that for both tensor product and sparse grid collocation, the number
of subdomain solves is reduced significantly by the deterministic multiscale basis in Method
S2 and even further by the stochastic multiscale flux basis in Method S3. The gain from
Method S3 is smaller for sparse grid collocation, due to smaller global to local ratio. In
both cases the runtime is not reduced as much, since the communication cost is significant
relative to the cost of solving subdomain problems, which are rather small in this example.
One way to reduce the time spent on communication would be to use a preconditioner
for the interface problem, which could be done in conjunction with the multiscale basis
implementation.

Another observation is that third order accuracy with a tensor product grid on 10
stochastic dimensions requires 2048 realizations, while third order accuracy with a sparse
grid on 200 stochastic dimensions requires only 401 realizations. It would not be possible to
perform tensor product collocation in 200 dimensions because it would require over 1.6 £60
realizations.

Table 2: Runtime and linear systems with the three collocation algorithms for Example 1.
Values in parenthesis denote the cost of the precomputation loop.

Nierm = 11, Tensor Product Collocation, Ny = 2: degree=3 (2048 realizations)

Method S1 | Method S2 | Method S3
Max. Linear Systems 542,498 208,896 55,296  (51,200)
Runtime in Seconds 301.8 202.5 166.6  (11.5)
Nierm = 200, Sparse Grid Collocation, £yae = 1: degree = 3 (401 realizations)
Method S1 | Method S2 | Method S3
Max. Linear Systems 35,082 26,466 25,954 (25,152)
Runtime in Seconds 34.7 33.4 32.5 (5.5)

6.2 Example 2: Checkerboard

Description. This example demonstrates an adaptive procedure used to refine the spatial
grid. There are N = 4 KL regions on the domain (0, 1)2. The bottom-left and upper-right
KL regions S, i = 1,4 each have a mean value of E[Y ?)] = 4.6, Nierm (i) = 2x 1 = 2 terms,
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Figure 3: Realization of permeability (top-left), mean pressure (top-middle), mean veloc-
ity magnitude (top-right), variance of pressure (bottom-left), variance of horizontal velocity
(bottom-middle), and variance of vertical velocity (bottom-right) for tensor product colloca-
tion in Example 1.
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correlation lengths n](-i) = 0.1, and variance (a(i))2 = 1.0. The top-left and bottom-right KL

regions S, i = 2,3 each have a mean value of E[Y®] = 0.0, Nierm (i) = 2 x 2 = 4 terms,
correlation lengths 77](-1) = 0.01, and variance (O'(i))2 = 100.0. Tensor product collocation
with Neop = 2 and sparse grid collocation with level £,,x = 2 are performed in Niey =
2+ 4+ 4+ 2 = 12 stochastic dimensions, requiring 4096 and 361 global realizations, and
16 and 57 maximum local realizations, respectively, giving global to local ratios of 256.0
and 6.33, per mesh adaptation. Flow is induced from left-to-right with the same boundary
conditions as in Example 1.

The adaptive procedure is as follows. The domain is divided into Np = 8 x 8 = 64
subdomains, and all interfaces are discretizaed with continuous linear mortars. On the
coarsest level each subdomain has a 2 x 2 local grid, and each mortar has a single element.
The stochastic collocation method is performed with Methods S1, S2, or S3 using this spatial
grid. Upon completion of the collocaiton, a residual-based a posteriori error indicator
developed in [34, 6] is computed using the expectation of the pressure together with the
mean permeability. The spatial grids of subdomains that contain errors beyond a given
tolerance are refined, as well as the mortars that touch those refined subdomains. At this
point, the entire collocation is performed again using the new spatial grid. The procedure
stops when no subdomain needs refinement.

Discussion. The low number of random dimensions allowed running both tensor product
and sparse grid collocation on the same test. Table 3 shows their computational cost.
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Figure 4: Realization of permeability (top-left), mean pressure (top-middle), mean velocity
magnitude (top-right), variance of pressure (bottom-left), variance of horizontal velocity
(bottom-middle), and variance of vertical velocity (bottom-right) for level pay = 1 sparse
grid collocation in Example 1.
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Method S2 results in an 82-83% decrease and Method S3 leads to a 93-99% decrease in the
number of linear systems required to solve the collocation on refinement levels 1-4 when
compared to Method S1. Once again, the runtimes remain almost constant, because the
small size of the linear systems keeps the problems communication bound.

Figure 5 shows the first four levels of spatial grid refinement in the adaptive procedure.
The grids are similar to what one expects for a deterministic problem with the given mean
permeability. Figures 6 and 7 demonstrate how both expectation and variance of pressure
and velocity magnitude are improved on progressively finer spatial grids in the case of sparse
grid collocation.

Figure 5: Spatial grids for refinement levels 1-4 with £pq: = 2 sparse grid in Example 2.
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Table 3: Runtime and linear systems across refinement levels 1-4 with the three collocation
algorithms for Example 2. Values in parenthesis denote the cost of the precomputation loop.

Nierm = 12, Tensor Product Collocation, N o = 2: degree = 3 (4096 realizations)

Method S1 | Method S2 | Method S3
Max. Linear Systems 3,722,250 655,360 35,200 (1,152)
Runtime in Seconds 5,353 5,409 5,280 (0.2)
Nierm = 12, Sparse Grid Collocation, Uy, = 2: degree = 5 (361 realizations)
Method S1 | Method S2 | Method S3
Max. Linear Systems 341,836 57,760 11,552 (4,104)
Runtime in Seconds 493.7 493.4 487.0 (0.5)

Figure 6: Mean pressure (top) and pressure variance (bottom) for refinement levels 1-4 with
bmaz = 2 sparse grid in FExample 2.

6.3 Example 3: SPE10 Benchmark

Description. The mean permeability in the third example is a 3-dimensional scalar field of
actual geological measurements, obtained from the x-component of the Society of Petroleum
Engineers’ (SPE) Comparative Solution Project?. It is a challenging benchmark problem
with a cartesian grid of 60 x 220 x 85, giving a total of 1,122,000 finite elements, see
Figure 8. This dataset is part of a Brent sequence, with the lower 35 layers representing
a prograding Tarbert formation, and the top 50 layers representing a fluvial Upper Ness
formation. A flow is induced from front-to-back with Dirichlet boundary conditions gp = 1
on face {y = 0}, gp = 0 on face {y = 220}, and no-flow homogeneous Neumann boundary
conditions on the other four faces.

The fine scale grid is broken up into Np = 2 x 5 x 2 = 20 subdomains of nearly equal
size. On the interfaces, the mortar space is comprised of faces with linear mortars with a

“For more information, see http://www.spe.org/csp
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Figure 7: Mean velocity magnitude (top) and wvelocity magnitude variance (bottom) for
refinement levels 1-4 with £,q, = 2 sparse grid in Fxample 2.

single 1 x 1 element.

In Example 3a, we perform tensor product collocation with N = 2 statistically indepen-
dent KL regions, roughly coinciding with the two geologic formations of the deterministic
data. The first region includes the lower 10 subdomains and is described by the parame-
ters: Nierm(1) =1 x 4 = 4 terms, correlation lengths n](-l) = 6.0, and variance ()% = 1.7.
The second region includes the upper 10 subdomains and is described by the parameters:
Nierm(2) = 1 x 6 = 6 terms, correlation lengths 17](.2) = 10.0, and variance (0(®)? = 1.2. In
Example 3b we switch to sparse grid collocation, and increase the number of terms in the
bottom and top KL regions to Niem(1) =4 x4 X 4 = 64 and Nierm(2) =5 x5 x5 =125
respectively. In Example 3¢ we increase the number of KL regions to N = 20, one in each
subdomain, each with Nierm (i) =2 X 3 X 2 = 12 terms.

Discussion. In this 3-D benchmark problem, the size of the subdomain problems is suf-
ficiently large so that the time spent solving a typical linear system dominates the time
needed to perform interprocessor communication. Tensor product collocation with N = 2
in Nierm = 4 + 6 = 10 stochastic dimensions requires a total of Nyea = 2'0 = 1024 global
realizations, and Nye,(i) = 64 maximum local realizations, giving a global to local ratio of
16.0. Table 4 shows that the number of linear systems was reduced by 92% with a deter-
ministic multiscale basis and 99% with a stochastic multiscale basis. Due to the sheer size
of the subdomain problems, the runtime was also dramatically reduced by 85% and 89%,
respectively. Figures 8-12 show the results of the computations.

In Example 3b, sparse grid collocation with £ = 1 in Nigermn = 64 + 125 = 189
stochastic dimensions requires a total of Ny = 379 global realizations, and Nyeq (i) = 251
maximum local realizations, giving a global to local ratio of 1.51. The number of linear
systems is reduced by 91% and 94%. The runtime is reduced by 83% with deterministic
multiscale basis, but is slightly worse with a stochastic multiscale basis with a reduction
of 80%. Method S3 is faster than Method S2 in the tensor grid case but not in the sparse
grid case due to different global to local ratios. When this ratio is smaller, the stochastic
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multiscale basis is reused fewer times and the runtime for forming it becomes a factor. For
instance, in Example 3b the precomputation loop is over 45% of the total runtime, while
in Example 3a it is only 7%. The structure of a tensor product grid causes this ratio to
remain very large, even when the difference between global and local dimension is small.

Recall that the main benefit to using a sparse grid is that the number of points grows
more modestly than a tensor grid as dimension increases. Unfortunately this means the
global to local ratio is smaller, so Method S3 is faster than Method S2 only when the
difference between global and local dimension is large. Indeed, in Example 3¢ we show
this effect, using No = 20 KL regions each having Nierm(7) = 12 dimensions. Sparse grid
collocation with £yax = 1 in Niegem = 12 % 20 = 240 stochastic dimensions requires a total
of Nieal = 481 global realizations, and Nye,(7) = 41 maximum local realizations, giving a
global to local ratio of 19.0. The results are given in Table 5, and in this case Method S3
shows an improvement in runtime over Method S2. Both multiscale basis methods are still
far superior to the traditional implementation.

Table 4: Runtime and linear systems with the three collocation algorithms for Example 3a
and Example 3b with Nq = 2 KL regions. Values in parenthesis denote the cost of the
precomputation loop.

Nierm = 10, Tensor Product Collocation, Neoy = 2 (1024 realizations)

Method S1 | Method S2 | Method S3
Max. Linear Systems 236,964 18,432 3,072 (1,024)
Runtime in Hours 110.34 16.95 11.72  (0.82)

Nierm = 189, Sparse Grid Collocation, lyq; = 1 (379 Realizations)

Method S1 | Method S2 | Method S3
Max. Linear Systems 79,047 6,822 4,774 (4,016)
Runtime in Hours 37.16 6.27 7.33 (3.32)

Table 5: Runtime linear systems with the three collocation algorithms for Example 3c with
Nq = 20 KL regions. Values in parenthesis denote the cost of the precomputation loop.

Nierm = 240, Sparse Grid Collocation, lyqe, = 1 (481 realizations)

Method S1 | Method S2 | Method S3
Max. Linear Systems 101,826 8,658 1,362 (400)
Runtime in Hours 47.8 7.97 5.50 (0.38)

6.4 Example 4: Convergence Test

Description. This example tests convergence rates in both stochastic and physical space.
There are Ng = 2 KL regions on the domain (0,1)? with Np = 4 x 4 = 16 subdomains.
A mean value of E[Y] = 5000(1 — sin(20x) sin(20y)) is used throughout the domain. KL
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Figure 8: Permeability realization (left) and its corresponding solution (right) for Ezample
3a.
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Figure 10: Velocity variance in x-direction (left) with several cross-sections (right) for Ex-
ample 3a.
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region SU) is the left half of the domain with Nieym (1) = 2 x 1 = 2 terms, correlation length
7 = 0.13, and variance (¢(1))? = 1.0. KL region S is the right half of the domain with
Nierm(2) = 2 x 2 = 4 terms, correlation length 7® = 0.09, and variance (¢(?)? = 1.1.
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Figure 11: Velocity variance in y-direction (left) with several cross-sections (right) for Ex-
ample 3a.
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Figure 12: Velocity variance in z-direction (left) with several cross-sections (right) for Ex-
ample 3a.
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Discussion. Figure 13 shows convergence rates in stochastic space for four different sam-
pling methods, wherein all tests have a fixed spatial grid. The subdomains have 20 x 20
grids in the first region and 17 x 15 grids in the second region. Continuous linear mortars
with 10 elements are used on all interfaces. The numerical solution with level 6 sparse grid
is used as a “true” stochastic solution in the computation of the errors. The figures show
absolute errors versus number of stochastic realizations. As expected, both collocation
methods converge significantly faster than the Monte Carlo simulations, with the sparse
grid being more accurate than the tensor product grid with the same number of realizatons.
The slight tapering off in the slope of the velocity error with sparse grid collocation is due
to the effect of spatial discretization error.

Table 6 shows convergence rates in physical space. A level £,,x = 3 sparse grid rule is
used in stochastic dimensions, but we note that these results are within round-off from an
isotropic tensor grid rule with N.o; = 3. The first three columns show the refinements of
spatial grids in each KL region and the mortar grid. The convergence rates reported in the
last three columns confirm the theory.

35



Figure 13: Log-log plot of convergence in stochastic space for Example 4. Different types
of sampling methods are shown in absolute L?-error for pressure (left) and H(div)-error for
velocity (right).
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Table 6: Convergence in physical space for FExample 4. Relative errors reported against
finest grid level; convergence ratios given in parentheses.

@D v @ viq | IED—pireell | E[a—ttrrac] | |E[V-(a—tiruc)]]
SY Grid | Mort. | 8t Grid | S, I TV tracl |
4 x5 2 I xT7 1.04E-02 1.76 E-01 2.56E-01

8 x 10 4 6x 14 | 3.93E-03 (2.64) | 6.35E-02 (2.77) | 1.02E-01 (2.51)
16x20 | 8 12 x 28 | 1.39E-03 (2.82) | 1.71E-02 (3.71) | 3.30E-02 (3.09)
3240 | 16 | 24 x56 | 3.74E-04 (3.72) | 3.80E-03 (4.50) | 1.14E-02 (2.89)
64x 80 | 32 | 48x112 | - - -

7 Conclusions

Three methods are presented to quantify uncertainty for flow in non-stationary porous media
that couple stochastic collocation with a mortar mixed finite element discretization. These
methods are non-intrusive, requiring the solution of deterministic problems at specified
collocation points, and are more efficient than Monte Carlo. Method S1 uses the traditional
implementation of the MMMFEM on each realization, Method S2 uses a deterministic
multiscale flux basis on each realization, and Method S3 forms a stochastic multiscale flux
basis across local realizations. A tensor product grid is suitable to handle relatively few
random dimensions, while a sparse grid is necessary to handle a larger number of random
dimensions.

We are able to draw three conclusions from the numerical examples. First, the com-
putational workload in terms of the maximum number of linear systems solved by every
subdomain is reduced by several orders of magnitude via the use a deterministic multiscale
basis, and it is further reduced via the use of a stochastic multiscale basis. Second, these
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savings do not always reduce runtimes because these techniques do not reduce the amount
of interprocess communication. In order to see an improvement in runtime for the multiscale
basis methods, the linear systems associated with the subdomain problems must be large
enough to dominate the overhead in runtime associated with the interprocess communica-
tion during the interface iteration. Unpreconditioned multiscale basis techniques change a
processor-laden simulation to a communication-laden simulation. A preconditioner could
be used to reduce the amount of communication as well as the number of linear systems.
Third, the ratio of global realizations to local realizations influences whether Method S3
is faster than Method S2. The smaller this ratio is, the larger is the relative cost of the
precomputation loop. A tensor product grid inherently has a large ratio, while a sparse
grid has a large ratio only when the difference between global and local dimension is large.
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