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Abstract

We consider a diatomic chain with nearest neighbors connected by
phase transforming springs. Assuming a piecewise linear interaction
force, we use Fourier transform to construct exact traveling wave solu-
tions representing a moving phase transition front and examine their
stability through numerical experiments. We find that the identified
traveling wave solutions may be stable in some velocity intervals. We
show that the kinetic relation between the driving force on the phase
boundary and its velocity is significantly affected by the ratio of the
two masses. When the ratio is small enough, the relation may become
multivalued at some velocities, with the two solutions corresponding
to the different orders in which the two springs in a dimer cell change
phase. The model bears additional interesting waveforms such as the
so-called twinkling phase, which is also briefly touched upon and com-
pared to its monatomic analog.

1 Introduction

The examination of coupled nonlinear oscillators has a long history, orig-
inating with the Fermi-Pasta-Ulam problem [8, 19]. In recent years, it is
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maturing as a field with numerous areas of application ranging from coupled
waveguide arrays and photorefractive crystals in nonlinear optics [22, 15] to
Bose-Einstein condensates in optical lattices in atomic physics [30], and from
DNA double-strand dynamics in biophysics [32] to ferromagnetic or nano-
mechanical systems [35]. A topic of particular interest within this broader
subject has often been the study of heterogeneous environments versus uni-
form nonlinear lattices. An arguably prototypical example of a heterogeneous
dynamical lattice has been that of dimers, i.e. chains consisting of two al-
ternating materials (in the simplest possible implementation two different
masses). Studies of diatomic lattices with harmonic interactions date back
to the work of Kelvin that led to the design of the first mechanical filter [7]. In
the nonlinear case, the dimer setting has attracted considerable attention in
its own right, with applications ranging from ferroelectric perovskites [5] and
polymers [33] to optical waveguides [42], granular crystals [6] and cantilever
arrays [35].

On the other hand, models with piecewise linear nonlinearity have been
used to understand a wide array of nonlinear phenomena, including breather
solutions of discrete nonlinear Schrédinger and Klein-Gordon equations [25]
and dynamics of dislocations [2, 10, 11, 13, 18, 17, 20, 23, 50, 52, 53], shock
waves [41, 43|, fracture [28, 37, 38] and phase transitions [3, 4, 24, 39, 40,
43, 47, 46, 48, 49, 51| in monatomic crystal lattices (see also the references
therein). The notable advantage of this approach is that the piecewise lin-
ear nature of the nonlinearity makes it possible to construct explicit travel-
ing wave solutions using Fourier transform techniques. Although they lead
to a non-generic asymptotic behavior near the depinning threshold [14, 9],
piecewise linear models capture the main features observed numerically in
the fully nonlinear case, including lattice trapping and radiative damping
due to phonons emitted by the moving defects in a Hamiltonian lattice. In
the diatomic setting, this approach has been used to show that the ratio
of the two masses has a substantial effect on the dynamics of dislocation
in a Frenkel-Kontorova chain [16] and crack propagation in a heterogeneous
two-dimensional lattice [29].

In the present communication we combine these two themes, a dimer
setting and a piecewise linear nonlinearity, to study the dynamics of phase
transitions. We consider a chain of two alternating masses connected by
“snap-springs” that are governed by a piecewise linear interaction force.
The two linear regimes correspond to two different material phases. The
monatomic case was studied in [3, 4, 39, 40] and in [47, 46], where interac-
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tions beyond nearest neighbors were also included, and the present study is
a natural extension of that work. It can also be viewed as an extension of the
semilinear problem considered in [16] for the diatomic chain with harmonic
nearest-neighbor interactions and nonlinear onsite potential to the present
quasilinear setting, where the forces in the nearest-neighbor springs are non-
linear. Our goal is to gain some insight into how heterogeneity of the lattice,
common in phase transforming materials and modeled here by a diatomic
chain, affects the phase boundary dynamics.

To study kinetics of a phase boundary, we rewrite the problem as a two-
strain formulation and seek heteroclinic traveling wave solutions connecting
the equilibrium states in different wells of the biquadratic interaction poten-
tial and representing a moving phase boundary. As in the previous work, this
leads to a system of linear advance-delay differential equations for even and
odd strains, which is solved using Fourier transform. The main parameter
in the problem is the ratio A of the two masses, 0 < A < 1, with A =1
corresponding to the monomer case studied earlier and A — 0 corresponding
to one of the masses being much heavier than the other. As in [16], a new
element introduced by the dimer setting (A < 1) is the difference, measured
by the variable «, between the times two springs switch phases in a dimer
cell. The values of o and the corresponding values of the driving force G for
the given value of the phase boundary velocity are determined by the nonlin-
ear phase switch conditions and the assumed phase distribution inequalities.
We show that at small enough A, there can be at least two values of « in
some velocity intervals, corresponding to two modes of phase propagation at
the same average velocity. In one mode, o > 0, the two springs in a dimer
cell switch phase consecutively, while in the other, a < 0, the second spring
in each cell changes phase first. The latter propagation mode corresponds to
a new type of solution, which has no analog in the monatomic setting. The
coexistence of the two propagation modes results in a multivalued kinetic
relation between the driving force and phase boundary velocity. We also find
that at smaller A a higher driving force is required for a phase boundary to
move with a given speed due to the weaker coupling between the neighbor-
ing dimer cells. Numerical simulations with piecewise constant and smooth
initial data verify the analytical results and suggest stability of the obtained
solutions in certain ranges of sufficiently high velocities. At intermediate val-
ues of A, this includes coexisting solutions with positive and negative values
of o and the same velocity. Overall, our results demonstrate that lattice
heterogeneity may substantially affect phase boundary kinetics.



While the main focus of this work is on traveling phase transition fronts,
other interesting wave forms in this system may develop under different initial
conditions. A prototypical one among them is the so-called twinkling phase,
analyzed in the monomer case of A = 1 in [3, 4]. Here, we illustrate that an
analog of this phase persists for A < 1, although it becomes progressively less
ordered as A decreases.

The paper is organized as follows. In Section 2 below, we set up the
dimer model with piecewise linear interactions, rewrite it in the correspond-
ing two-strain formulation and obtain the system of advance-delay differential
equations for the traveling phase transition wave. In Section 3, we proceed to
take advantage of the near-linear character of the model to solve these equa-
tions using Fourier transform. As a result, the roots of the underlying linear
operator (in the co-traveling frame) become of interest. Upon connecting
the problem to its corresponding continuum limit in Section 4, we proceed to
examine the structure of these roots, which is more complex in the diatomic
setting, in more detail in Section 5. In Section 6, we use the above approach
to explicitly construct traveling wave solutions which through their reso-
nance with the linear modes include different plane waves in the tail behind
the moving front. Stability of the waves is investigated through numerical
simulations in Section 7. Finally, in Section 8, a prototypical example of
alternative wave profiles forming spontaneously through suitable initial data
(and its variation over \) is given. Section 9 concludes the paper and offers
some suggestions for future study. In the Appendix, explicit solutions are
derived using the residue theorem.

2 The model

We consider in what follows a chain of alternating masses, m and M > m,

connected by massless springs with the interaction force f(w). Let u,(t) and

vn(t) denote the displacements of the masses m and M, respectively (see

Fig. 1). Then the equations governing the dynamics of the chain are
Mily, = f(Vn1 — Un) — f(Un — vp) (1)
Mvn = f(un - Un) - f(vn - un—l)a

where i, and v, denote the second time derivatives. It is convenient to

rewrite the problem in terms of strain variables

Tn = Up — Un, Sn = Unt1 — Unp,

4



nth dimer cell

'n

Sn

Up—1 Vn Up Vn+1

Figure 1: The diatomic chain.

the pair of strains (r,, s,) then describes deformation inside the nth dimer
cell (see Fig. 1). In terms of these variables, the equations of motion become

Fu= —fls0) = T2 () + (s )
1 M 1
§n = Mf(’/‘”.H) - mm+M f(sn) + Ef(lrﬂ)

Let K > 0 be the scale of force (that can be selected upon rescaling conve-

nience) and introduce the rescaled force f = f/K and time ¢t = t\/m/K.

After dropping the bars, we obtain the rescaled equations
Pn = f(sn) = (L+ A) f(rn) + Af(sn-1)
$n = Af(rnt1) = (L4 A)f(sn) + f(ra),

where we introduced the dimensionless parameter

(2)

A= U (3)
Note that under our assumptions 0 < A < 1. At A = 1 the problem reduces to
the one for monatomic chain. The case of A = 0 also provides an interesting
special limit. In this case, the dimer cells decouple, i.e. the strain pair
(Tn, Sn) Do longer “communicates” with the neighboring pairs (r,_1, $n_1)
and (r,41, Sny1), and we end up with a lattice of isolated dimer cells. In the
case of special localized breathing solutions [27, 21], this can be used as a
starting point for the development of nontrivial solutions of this type through
a continuation in A. However, for the traveling solutions considered herein,
such a decoupling is less beneficial; in fact, some of its adverse consequences
will become apparent in our dynamical studies in Sections 7 and 8. For these
reasons, we will not attempt to exploit this limit in the present work.



To model phase transitions, we assume that f(w) is a non-monotone
function such that f'(w) > 0 for w < @ and w > b, for some a and b
satisfying 0 < @ < b, and f'(w) < 0 for a < w < b. The two regions where
f(w) is increasing represent two different phases and are separated by the
spinodal region (a,b). The motion of a phase transition front can then be
represented by a traveling wave solution of (2) of the form

=1, spn=3s5(&), E=n—ct (4)

that connects equilibrium states in two different phases. Here ¢ > 0 is half
of the velocity V' = 2c¢ of the moving phase boundary. Such solutions must
satisfy the advance-delay equations

c’r'" = f(s(€)) — (L +X)f(r(€)) + Af(s(€ — 1))
’s" = M(r(€+1)) = (L+ ) f(s(8)) + f(r(€))-

An exact solution of this problem can be obtained if we assume that f(w)
is bilinear:

(5)

flw)=w-0(w —w,.), (6)

where 6(z) is a unit step function. In this case, « = b = w,, and the spinodal
region degenerates into a single point w = w, separating the two phases
where f(w) is linear: phase I (w < w,) and phase II (w > w.). Without
loss of generality we may assume that the r-springs change phases at £ = 0,
while the s-springs switch at £ = —a, where « is to be determined:

r(0) = s(—a) = w.. (7)

We further assume that the moving phase boundary leaves the high-strain
phase II behind, i.e.

T‘(f) 2 We, 5 § 0’ S(g) 2 We, g § —Q. (8)

To find the limits of the delay constant «, let w,(t) denote the strain in pth
nearest-neighbor spring and consider the nth dimer cell, which includes two
consecutive springs with strains wy,(t) = r(n — ct) and wy,11(t) = s(n — ct)
(see Fig. 1). By construction, the first spring in the cell switches from phase
I to phase II at t = n/c, and the second changes phase at t = (n + «a)/c.
Thus o > 0 means that the second spring changes phase after the first, « =0
corresponds to both springs changing phase simultaneously, and oz < 0 means
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that the second spring switches to phase II before the first spring. We consider
a phase transition wave in which the dimer cells transform consecutively, so
that the time delay between phase switch in the first and second springs in a
cell may not exceed 1/c, the time between transformations of first (second)
springs in the neighboring dimers. Thus we have

-l<a<l. 9)
Under the above assumptions, the system (5) becomes

c’r'" = 5(6) = L+ Nr(€) +As(€ — 1) + (1 + 1)0(—€) — (=€ —a) = M(1 —a — &)
A" =M(E+1) = (1+N)s(6) +7(6) + (1 + N)O(=€ — ) — M(=€ — 1) — O(=£).
(10)

We need to solve (10) under the switch condition (7), the constraints (8) and
the conditions at infinity

(r), (s) — wx as { — oo, (11)

where the angular brackets denote the average values. Here the average is
taken over the largest period of oscillations that we expect to develop in the
Hamiltonian system (10) but can also be defined as (w(§)) = lim, ffﬂj w(C)dC.
The limiting average strains w, and w_ are the uniform equilibrium states

of (10) in phase I and phase II, respectively.

3 Exact solution

Since the system (10) is linear, we can solve it using Fourier transform. We
obtain

1 [P (A 41— e k(X + ) — 4xsin® &

= S iké
re) =wy 453 KL (k, ) ¢k
r
1 [ AR A+ 1— R (N +e %)) —dsin® &
- - ik(E+a)
s(0) =ws 455 KLk, 0) emtdk,
r
(12)
where L
L(k,c) = c*k* + 4\ sin® 5~ 20+ ) 2k? (13)
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and the integration contour I' follows the real axis except near singularities
(poles in the complex plane). One such singularity is at £ = 0, and the
contour goes above it. There is also a finite number of nonzero real roots of
L(k, c) which correspond to lattice waves emitted by the moving front. As in
[23, 47], these singularities must be handled so that the solution satisfies the
radiation condition: waves must carry energy away from the moving front
and not toward it. Specifically, let w(k) be the dispersion relation between
the frequency of the plane wave and its wave number k; positive real roots of
L(k, c) satisfy w(k) = kc, meaning that c is the phase velocity. Note that in
the diatomic case A\ < 1 the dispersion curve has two branches, the acoustic
branch w; (k) and the optical branch wy(k) given by

wia(k) = (A +17F \/(/\ +1)2— 4\ sin2(k/2)> 1/2,

with we(k) > wi(k) [7]. The radiation condition means that waves whose
group velocity ¢, = w'(k) is below the phase velocity ¢ must propagate behind
the front, while the modes with ¢, > c are placed ahead of it; in what follows,
we denote the corresponding sets of nonzero real roots of (13) by N_ and N,
respectively. To ensure that the radiation condition is satisfied, the contour
I' must go above the real roots with ¢, < ¢ and below the roots with ¢, > c.

In what follows, we will assume 0 < A < 1; the limiting case A = 1
obtained in [39, 47] will be recovered at the end of the section. We start by
deriving the equation for the delay constant « for given ¢ > 0. Observe that
the condition 7(0) — s(—«) = 0, which follows from (7), and (12) implies that
a must be a solution of f(a) = 0, where

fla) = %/k)\sin(k(l Z((}j’))c)— sin(ka)dk. (14)

r

Observe that f(0) = —Af(1), and thus there exists at least one root satisfying
0 < a < 1. Indeed, if f(0) # 0, then f(1) has the opposite sign, implying a
root in (0,1) by continuity, and if f(0) = 0, then « = 0 is a root.

To get an explicit expression for f(«), suppose first that 0 < o < 1 and
rewrite (14) as

1 Aeik(l—a) _ elka 1 )\e—ik(l—a) —_ e tha
=— [k dk— — | k dk.
f(@) 27ri/ L(k,c) 27ri/ L(k,c)

r




Since a@ > 0 and 1 — «a > 0, we can close the contour in the first integral by a
semi-arch at infinity in the upper half of the complex plane and the contour
in the second integral in the lower half plane and apply Jordan’s lemma and
residue theorem to each of the resulting integrals. Recalling from the above
discussion that the contour I' goes above the real roots of L(k, ¢) with ¢, < ¢
(the set N_(c)) and below the roots with ¢, > c (the set Ny (c)) and that the
contour also goes above k£ = 0, we then obtain

ezk (1-a) etka —zk 1-a) e—tka

by — —
Zk L’kkc) +Zk Eka)

keEM*(c) keM— (15)

A—1
1.
+)\_2(1+)\)02, I<ax<

Here
M. ={k: L(k,c)=0, Imk 2 0} U Ny

are the sets of (generally complex) roots included in the corresponding closed
contours.
If -1 <a <0, we write (14) as

dk.

L / k/\eilc(l—a) + e tka 1 /k)\e—ik(l—a) + elka

dk — —
L(k,c) 2mi L(k,c)

T

fla) =

21

and again close the contours in the first and second integrals in the upper
and lower half planes, respectively, and apply Jordan’s lemma, which holds
because o < 0 and 1 — a > 0 now. This yields

/\eik(l—a)+e—ika
= k
i@ Z Ly(k, c) i Z
keM+(c)

A+1
A=2(14 \)e?’

—ik(l—a) + etka

keM—(c) Li(k,c) (16)

-1<a<0.

One can show that the expressions (15), (16) yield the same limit as @ — 0
and thus describe a continuous function on the interval —1 < a < 1.

The problem thus reduces to finding the roots of L(k, c) for given ¢ and
then solving f(a) = 0 in the interval (—1,1); note that in general there
may be more than one solution. For each o we then find the corresponding
solutions (12), which can also be written in terms of residues. The resulting
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expressions (31-33) and (36-38) are presented in the Appendix. They imply
the following relation between the average strains at -oco:

B S
1—(c/cs)?’

wW_ =Wy + (17)
where
A
C. = _— ]_8
° 2(A+1) (18)
has the physical meaning of half the macroscopic sound speed, as we shall see
below. Since w_ > w, under our assumptions, (17) implies that the phase
boundary must be subsonic: ¢ < c¢;. We also obtain the following relation
between the strains wy at infinity and ¢ (see Appendix for details):

1
W Z T 50 (e/en)?)
1 < 3 AR A+ 1 — e () 4 %)) — 4Xsin® &

+ —

2\, 2~ A (19)
B AE2(A 4+ 1 — @D () + ™)) — 4\ sin? g)

N () kLy(k,c)

For given ¢ > 0 and for each of the corresponding roots « of (15), (16) the
formal solution is thus furnished by (31-33) and (36-38). If the inequalities
(8) are satisfied, it is an admissible solution of the traveling wave problem.

We now consider the limiting cases. At A =1 (equal masses) we have

L(k,c) = *k* +4sin® g— 4%k = <c2k2 —4 cos? %) <02k2 — 4 sin? %) (20)

Meanwhile, o = 0.5 clearly satisfies f(a) = 0 in this case (there may be other
roots). With this value of «, the numerators in the integrands of (12) in the
expressions for r(£) and s(€) both become 4sin® £ (c?k? — 4 cos? £). Thus the

factor c2k? — 4 cos? % in the numerator and denominator cancels out, and we

obtain
1 4sin? k )
r(€) =wy + — 4 e*edk
(&) =wy 2mi ) k(c*k* — 4sin® &)
T

o2k
5(€) =ws + — / W ASIN G giker1/2 gy,



If we now let wy,(t) = 7u/2(t) = r(n/2 — ct) if n is even and wy(t) =
S(n-1)/2(t) = s((n—1)/2—ct) if n is odd, we can write w = w(¢), { = n—Vt,
V = 2¢. Replacing k/2 by k in the integral, we obtain

1 4sin® k
= + — 2
we)=w+ 5 k( 2

thus recovering the solution in [39, 46, 47]. The solution can also be written
in terms of plane waves using residue theorem and Jordan’s lemma as in the
Appendix.

In the limit A — 0 (M > m for fixed m), the sound speed (18) tends to
zero, and since the phase boundary velocity must be subsonic, there are no
traveling wave solutions with nonzero velocity in this case. Recall that in this
case the dimer cells become uncoupled, and thus a signal cannot propagate
through the chain.

Stationary states. Another important limit is ¢ = 0, when a phase bound-
ary becomes stationary. Seeking equilibrium solutions of (1), we have f(r,) =
f(sp) = o for all n, where o is the stress in the chain. Due to bilinear non-
linearity this means r, = s, = 0 + 1 > w, for springs in phase II and
rn = S, = 0 < w, for springs in phase I. The solution thus exists and is sta-
ble in the trapping region w. — 1 < 0 < w,, i.e. while all the springs remain
in their respective phases. At the boundaries of the trapping region, such
solutions cease to exist, and a phase boundary propagation or nucleation is
initiated.

Shock solutions. In addition to phase transition fronts we constructed
above, there are traveling wave fronts connecting the uniform equilibrium
states in the same phase. These solutions describe a shock wave propagating
through the linear chain with average velocity equal to the sound speed
V, = 2¢,. Shock solutions in a semi-infinite linear diatomic chain under a
velocity impact at the end were derived and analyzed in [31].
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4 Connection to the macroscopic problem and
the kinetic relation

The simplest continuum approximation of the system (1) is the partial dif-
ferential equation, which after rescaling takes the form

1

V_futt = (f(uz))e (22)

where we recall that V; = 2¢, is the sound speed in each phase and

1 A+1

V: o o2x
thus yields the rescaled density on the continuum level. The phase bound-
ary in this limit is represented by a moving discontinuity. Recall that the

Rankine-Hugoniot jump conditions for the strain w = wu, and the particle
velocity v = u; across a discontinuity moving with velocity V' are

V2
V—szllw]] =[fw], ] =-V[u], (23)

where [g] = g+ — g_ denotes the jump of ¢g. In addition to the above jump
conditions, the continuum theory requires that the rate of energy dissipation
must be nonnegative: R = GV > 0. Here

w+—|—w_

G = [B(w)] - {f}lw] = 5= — w, (24
is the configurational (driving) force, with ¢(w) = [ f(w)dw being the energy
density and {f} = (f(wy) — f(w_))/2 denoting the average stress across the
discontinuity. In case of subsonic discontinuities (V' < V), which violate the
Lax condition, this is, however, not sufficient to obtain a unique solution
of the initial value problem associated with (22) [12, 26, 36, 45]. To see
this, consider (22) with piecewise constant Riemann initial data u,(z,0) =
wf(—x), us(x,0) = 0 prescribed on the real line, with given constant initial
left strain wy;, > 0. The structure of an expected piecewise constant solution
is shown in Fig. 2. It features a phase boundary propagating with velocity
V < Vi and two shock waves propagating away from it. There are five
unknowns: w_, wy, v, v, and V. However, there are only four jump
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A
phase boundary
x=Vt
(w-,v-)
shock shock
(W+,V+)
x==Vt x=Vt
(WLaO) (070) o

» X

Figure 2: Solution of the continuum problem with a single propagating phase
boundary.

conditions: two across the phase boundary and one across each shock (since
shocks propagate with V' = £V, the first of (23) is trivially satisfied). Thus,
we obtain a one-parameter family of solutions. To remove this unphysical
non-uniqueness and provide the needed closure of the continuum problem,
(22) must be supplemented by a kinetic relation G = G(V') specifying the
dependence of the configurational force on the velocity of the phase boundary
[1, 44]. Classical continuum theory provides no information about phase
boundary kinetics.

As shown in [47] (see also [39, 48, 43, 49]) for the case of monatomic chain
(A = 1), the missing kinetic relation can be obtained from the underlying dis-
crete model. Indeed, the traveling wave solution we obtained for the discrete
problem replaces the discontinuity by a transition layer (core region). The
solution features non-decaying oscillations about the average values w.., with
wave numbers £ € N.(V/2), which are due to the lattice waves (phonons)
emitted by the moving front. These waves carry energy away from the mov-
ing front, resulting in what is perceived on the macroscopic level as energy
dissipation. Observe also that the first jump condition in (23) coincides with
the condition (17) we obtained in the discrete problem. The second jump
condition can be similarly recovered after solving for the particle velocity [47].
In the continuum limit, the width of the transition layer goes to zero, but
the kinetic information is retained in the relations (19) between the strains
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wy and ¢ = V/2. Together with (24) they imply the kinetic relation

G(V):%( 3

VR2(A+ 1 — e % (A + %)) — 4Asin? &

e kLy(k,V/2) )
S VR2(A+1— e % (A + ¢*)) — d\sin? & |

kENL(V/2)

Alternatively, the same kinetic relation can be obtained by computing the
fluxes of energy carried by the emitted lattice waves [47].

Note that the trapping region w, — 1 < o < w, for stationary states
(V = 0) corresponds to |G| < 1/2. This means that a phase boundary may
remain trapped in the lattice until the magnitude of driving force reaches the
Peierls value Gp = 1/2 (though there may be dynamic solutions coexisting
with the stationary ones, as we shall see). Beyond this value, only dynamic
solutions are possible.

5 The root structure

We now return to the discrete problem and consider the structure of the
nonzero roots of L(k,c), which, as we recall, determines the traveling wave
solution.

Note that (13) can be written as

L(k,c) = k' (g°(k) — ) (R*(k) = ¢*),

where

\/A + 14+ /(A +1)2 —4)sin?(k/2)

g(k) = 7
VA1 VO 12 — sin?(k/2)

"= E

(26)

correspond to the two branches of the dispersion curve. Note that g(k) >
h(k) for A < 1 and that a strict inequality holds when A < 1. Observe also
that the value of A(k) at £ = 0, which is also its maximum value, equals the
half sound speed (18). At a given ¢ > 0 the nonzero real roots thus solve
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Figure 3: The functions g(k) and h(k) at A = 0.7 and the corresponding real
roots at ¢ = 0.11. Pluses and minuses mark the roots in the sets N, and
N_, respectively.

g(k) = c and h(k) = ¢, with ¢, 2 cif ¢'(k) 2 0 and Rh'(k) 2 0, respectively.
This means that the sets of real roots are given by

Ni(c) ={k: g(k) =c, g'(k) 2 0} U{k: h(k) = c, h'(k) 2 0}.

Fig. 3 shows g¢(k) and h(k) and the corresponding positive real roots at
c¢=0.11 and A = 0.7. The values of ¢ corresponding to extrema of g(k) and
h(k) are resonance velocities; observe that the constructed solutions (31-33),
(36-38) are not defined at such ¢ since Li(k,¢) = 0 in the denominator.

In addition to the real roots, there are infinitely many complex roots
with nonzero imaginary part, which contribute to the structure of the core
region around the phase boundary. Branches of these roots bifurcate from the
branches of real roots in the space (Rek,Imk, c) as shown in Fig. 4. Specifi-
cally, unbounded branches of complex roots, shown in red, bifurcate from the
local maxima of g(k). Additional branches, shown in green, bifurcate from
the local maxima of h(k). Each of these branches either terminates at the
nearest local minimum of g(k) or, when there is no such minimum nearby
(lower A), is unbounded.

As A — 1, the branches g(k) and h(k) of the real roots become closer.
At A = 1 the local minima of g(k) coincide with local maxima of h(k) at
nonzero k; recall that in this case L(k,c) can be factorized as in (20). In
the other limiting case, A = 0, the acoustic branch of the dispersion relation
disappears (h(k) = 0), and the optical branch yields g(k) = v/2/k|.
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Rek 30

0

(c) A=0.2

Figure 4: Nonzero roots of L(k, ¢) at different . The real roots are in black,
and the other roots are in red and green.
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6 Strain profiles and kinetic relation: some
examples

We now consider some examples of strain profiles and kinetic relation cor-
responding to the constructed traveling wave solutions. The procedure for
obtaining solutions was as follows. For given ¢ > 0 and 0 < A < 1, we
computed the first N roots of L(k, ¢) (typically, N = 400) and found roots «
in (—1,1) of the function f(«) defined in (15), (16). For each value of o, we
then found w, and w_ using (19), we calculated the corresponding driving
force (25) and computed the solutions r(£) and s(£). Since the continuity
of the solution (31-33) and (36-38) at £ = 0 and £ = —a, respectively, re-
quires the condition (34), which is not satisfied exactly when only finitely
many roots are taken into account, we computed 7(§) at [£] < 0.5 and s(&)
at |£ + «| < 0.5 numerically using (12) with small added viscosity to remove
singularities from the real axis. For £ outside these neighborhoods, (31-33)
and (36-38) were used.

As an example, consider ¢ = 0.2 and A = 0.8. In this case there are two
positive real roots, one solving h(k) = ¢ and the other g(k) = ¢. Both roots
are along the decreasing portions of the corresponding functions and thus
belong to N_(c), while N, (¢) is empty. After finding other roots and substi-
tuting the resulting sets into (15), (16), we find that there are five solutions
of f(a) =0 in the (—1,1) interval: o = 0.5008, 0.0395, 0.0006, —0.0687 and
—0.4592. Of these, only a = 0.5008 yields an admissible solution, i.e. a solu-
tion which satisfies the assumed inequalities (8). The corresponding profiles
of r(¢) and s(&) are shown in Fig. ba. There are constant-amplitude lat-
tice waves propagating behind the moving front due the real roots in N_(c).
The combination of oscillations with two different wave numbers results in a
weakly quasi-periodic structure. There are no lattice waves moving ahead of
the phase boundary because NV, (¢) is empty. Meanwhile, all other roots lead
to non-admissible strain profiles, which violate the assumed inequalities (8)
by intersecting the line w = w, more than once and thus must be discarded.
See, for example, r(£) (solid line) in the inset of Fig. 5b (@ = —0.4592).

At A = 0.5 and A = 0.2, there are two admissible solutions for each A
at ¢ = 0.2, corresponding to @ > 0 and o < 0 and shown in Fig. 5c-f. In
particular, the solutions in (d) and (f) have a < 0 and are admissible, while
the corresponding root at A = 0.8 did not yield an admissible strain profile
for r(&) (see (b)). Recall that solutions at o > 0 correspond to the s-springs
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Figure 6: (a) The kinetic relation G(V') and (b) the corresponding «(V') for
A = 0.2 (black segments), A = 0.5 (red) and A = 0.8 (green) at V > 0.15.
Only branches containing solutions that are admissible at w, = 1 are shown.

switching phase after the r-springs behind them in a dimer cell, while o < 0
means that an s-spring in each (r, s) cell will change phase first.

Our results suggest that for each A there are velocity intervals at small
enough c in which the formally constructed solution violates the assumed
inequalities (8) for all possible values of a. This means that solutions satis-
fying (8) do not exist in these velocity intervals, whose structure depends on
w,. It should be noted, however, that the assumptions (7) and (8) are too
restrictive. For example, in a closely related Frenkel-Kontorova model with
the same bilinear nonlinearity it is possible to construct admissible solutions
that equal the critical value over an interval of £ values, rather than a single
point, at velocities below the first resonance [34]; similar calculations can
also be done in this case. However, such solutions are likely to be unstable,
and we will not pursue this issue further in this paper.

Fig. 6 shows the kinetic relation (25) at V' = 2¢ > 0.15 and the corre-
sponding «(V') for which admissible solutions were found at w, = 1. Observe
that as A decreases, a higher driving force is needed to propagate a phase
transition front at the same velocity, due to the weaker coupling between
dimer cells. Note also that while solutions with @ > 0 are dominant, at
smaller values of A there are velocity intervals where they coexist with so-
lutions that have o < 0. The new type of solutions with o < 0 is thus a
consequence of lattice heterogeneity and has no analog in a uniform chain.
At sufficiently high velocities, there is only one root, a > 0. As V approaches
the sound speed limit 2¢,, the driving force tends to infinity, and « tends to
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a limiting value that depends on A.

7 Stability of the obtained solutions

To test stability of the obtained solutions we conducted numerical simulations
of the system (2) with bilinear nonlinearity (6) on a finite chain with ny
masses (typically ny = 600), solving for wy,(t) such that w, = rn/ if n is
even and w, = S(p,—1)2 if n is odd. Two types of initial conditions were
considered. The first had piecewise constant strain

wr, n<ng
wn(0) = we, 1 =mg (27)

0, n > ng,

while in the second a smooth initial strain was prescribed:

wa(0) = wy, (1 _ %tanh(n _ n0)> | (28)

In both cases ng = ny/2, and the initial particle velocity was zero, so i, (0) =
0. We chose wy, > w,. > 0, so that the initial condition had a phase boundary
at n = ng. The left strain wy, served as the control parameter. The boundary
conditions in the numerical simulations were consistent with the initial data:
wy = wr, and w, ; = 0. Each simulation was run until long-time behavior
could be determined (typically t = 300). The length of the chain was chosen
so that there is no wave reflection from the boundaries during the simulation
time, and the symplectic Verlet algorithm was used.

Typical results with both types of initial conditions are as follows. At
wy, below a certain threshold the long-time solution features a stationary
phase boundary, with two shocks propagating away from it with the average
speed V; = 2¢,. At higher w;, one of the two possible scenarios happens. In
one, the initial interface starts propagating but after some time multiple new
phase boundaries nucleate (see Fig. 7). In another scenario, after an initial
transient time interval the solution approaches a limit in which a steady phase
transition wave propagates to the right and two shocks are moving away from
it. As the wave propagates, dimer cells consisting of a consecutive pair of
even-numbered (r-spring) and odd-numbered (s-spring) springs change from
phase I to phase II. In some cases (see also further discussion below), the
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Figure 7: Snapshots of strain profiles exhibiting multiple phase boundaries
in numerical simulations with Riemann initial data (27) at w, = 1, A = 0.2
and (a) wy = 4.0, t = 300; (b) wr, = 6.5, t = 500.

s-spring in each dimer cell changes phase before the r-spring. Typically,
however, the r-spring switches phase first, so that the springs in the chain
change phase one after another. Fig. 8a shows an example of such a solution
with the initial conditions (27) at A = 0.5, t = 300 and w;, = 2.7. During
the simulation, we tracked the displacement z,(¢) of the phase boundary
from the initial position (defined at each ¢t as n — ny such that w,(t) >
w, and wy11(t) < w.) and measured the time intervals 7' between phase
switching times of consecutive springs. The results are shown in Fig. 8c. One
can see that at large ¢ these intervals oscillate between alternating smaller
and higher values, which in this case are 2.9 and 5.78. This is consistent
with the constructed traveling wave solutions for even and odd-numbered
strains: recall that there is a time delay between the times when even and
odd springs switch phase. The average phase boundary velocity resulting
from the simulations is thus V' = 0.23 yielding ¢ = V/2 = 0.115 for even/odd
springs. Fig. 8b compares the numerical solution (circles) around the phase
boundary to the corresponding strain profile obtained from the analytical
solution (solid line). The good agreement between the two indicates stability
of the constructed traveling wave solution.

For a more systematic comparison of numerical and analytical solutions
in the parameter range leading to a steady phase transition wave, consider
the solution of the continuum problem (22), (23) with the piecewise constant
initial data specified above. Recall that the solution on the macroscopic level
is piecewise constant, as shown in Fig. 2. As in the numerical simulation
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described above, there is a subsonic phase boundary moving with velocity
V' = 2c¢ and two shocks moving away from it with the sound speed V; = 2¢,.
Recall that to obtain a unique solution of the continuum problem we must
supplement it by a kinetic relation G = G(V). This relation is “hidden”
in the discrete problem which does not need any additional conditions to
generate a unique solution. Rather than use (25), the relation we obtained
from the traveling wave solution, we will extract the kinetic relation from
the numerical solution of the discrete problem, and compare the two. Using
the jump conditions (23) across the two shocks and the phase boundary and
recalling that G = (wy +w_)/2 — w,, we obtain

wip, Vv
=% WA v

If the numerical simulation for a given wy, generates a long-time solution that
corresponds to a single phase boundary on the macrolevel, we can calculate
its average speed V' at large ¢ (averaged over the last ten time intervals),
compute the driving force (29) and compare the result to the analytical
kinetic relation.

The results are shown in Fig. 9 and Fig. 10, with (V,G) pairs obtained
from solutions with a single macroscopic phase boundary that were generated
for different wy, from piecewise constant initial strain (27) (red circles) and
smooth initial data (28) (green circles). Traveling wave solutions selected
by the initial data (and thus apparently stable) have velocities in certain
intervals ([0.438,0.453] at A = 0.2, [0.225,0.247] and [0.34,0.6] at A = 0.5
and [0.329,0.71] at A = 0.8), with the corresponding ranges of wy. Initial
data with wy, outside these ranges lead to long-time numerical solutions that
either feature a stationary phase boundary (small enough wy, V = 0) or have
multiple phase boundaries as in Fig. 7. It is important to remark, however,
that traveling wave solutions that are not selected are not necessarily unstable
since they may have a narrow basin of attraction which does not include the
initial data considered here.

Note, in particular, that numerical simulations suggest stability of some
traveling wave solutions with o < 0 at A = 0.5 when the driving force is
sufficiently small; see Fig. 9b. Recall that in these solutions the s-spring
in each (r,s) cell changes phase first, thus temporarily creating three phase
boundaries instead of a single one on the microlevel. Once the r-spring
changes phase, there is again a single interface, until the s-spring in the next
cell transforms, and so on. This is illustrated in Fig. 11 which shows evolution

— W. (29)
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to admissible traveling wave solutions are shown. Red and green circles
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corresponding to initial conditions (27) and (28), respectively.
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Figure 11: Strain evolution in the numerical solution with initial data (28),
A= 0.5, w, =1 at wy = 2.65, which corresponds to V = 0.233 and a =
—0.325.

of the strains in two neighboring cells, (wsss, w349) = (r174(%), s174(t)) and
(w350, w3s1) = (r175(t), s175(t)) for a solution with @ < 0. On the macroscopic
level, these details are averaged out, and there is only one phase boundary,
which in this case propagates with a slightly higher velocity, V' = 0.233, than
in the solution with & > 0 (o = 0.66, V' = 0.221) and the same driving force,
G =0.17.

Observe also that apparently stable solutions corresponding to different «
and different driving force may coexist at the same velocity, and that steady
motion at different velocities (including stationary ones) and different o may
coexist at the same value of the driving force. Finally, note that at smaller A
the range of driving forces where the constructed traveling wave solutions are
selected by the initial data becomes more narrow, and higher driving forces
are required due to the weaker coupling between dimer cells.

8 Some additional numerical experiments and
ensuing waveforms

Traveling phase transition and shock waves moving at constant average speed

are not the sole waveforms that arise in this dimer chain. In this section,
we briefly give some examples of another type of waveform that may arise
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Figure 12: Space (n)-time (¢) contour plot of the field w, initialized below
the critical point w, = 1 by 10~*, while the central site is above the critical
point by 107%. A twinkling phase spontaneously emerges as a result in the
dimer chain with (a) A = 0.5 and (b) A =0.1.

in the dynamics (spontaneously so) to provide a feeling about the additional
wealth of phenomenology inherent in the model.

Motivated by the work of [3, 4], we have initialized the chain with all the
sites being very close to the critical point (of w. = 1) but slightly below it,
while a single site is slightly supercritical (by around 107%). The results are
shown in Fig. 12 and Fig. 13. We see that this initial condition produces in
addition to the outgoing shock waves an oscillatory structure whereby in each
cycle each of the participating sites crosses the critical point (as it goes from
yellow to red, or from grayer to darker) once. This is the so-called twinkling
phase analyzed in detail for a monatomic chain [3, 4], and it is certainly
a dynamical behavior also available in the dimer case.  Focusing on the
differences of this twinkling phase from its monomer analog of A = 1, we note
that as observed in [3, 4], in the latter case, the phase remains nearly periodic
for a number of periods (about 10), and then becomes random. In the dimer
case of Fig. 13, we observe that this periodicity is almost lost and both the
size of the regions in each phase (phase I or IT) within the twinkling phase and
their dynamics appears to be random. Another aspect in which the twinkling
phase is affected in the dimer chain is controlled by the magnitude of A\. The
effect here is somewhat similar to what we observed in the traveling waves
discussed previously. Namely, as A is decreased, the effective connectivity
between the dimer pairs is reduced and thus the progressive expansion of the
twinkling phase is slowed down (and of course the corresponding shock waves
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Figure 13: Snapshots of strain profiles corresponding to the simulation in
Fig. 12a with A = 0.5.

formed at its edges are slower t0o). This is seen by comparing the results for
A=0.5and A =0.1in Fig. 12.

9 Conclusions and future challenges

In the present work, we have considered the case of a dimer chain with one of
the arguably simplest possible forms of nonlinearity, namely a piecewise linear
interaction modeling phase transitions. This enables an analytical descrip-
tion of heteroclinic traveling wave solutions representing a subsonic phase
transition front propagating through the chain. The solution is obtained us-
ing Fourier transform and determined by the roots of the linear part of the
traveling wave problem. These roots were identified for different values of the
fundamental parameters of the system such as the speed ¢ and the ratio of
the masses A and were used in order to explicitly construct the corresponding
traveling waves. We showed that the resulting kinetic relation between the
driving force on the phase boundary and its velocity is strongly dependent
on A. In particular, as A decreases, the sound speed becomes smaller, and
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a higher driving force is required to propagate the phase boundary through
the chain at the given speed. This is the result of the progressively weaker
coupling of dimer cells as A — 0. A key feature in the diatomic case A < 1 is
that the kinetic relation may become multivalued, as a given velocity value
may correspond to more than one values of the parameter o, which measures
the delay between the times the two springs in a dimer cell switch phases, and
thus more than one value of the driving force. In particular, the two springs
may change phase in different order, resulting in a new type of solution that
is only seen when A is sufficiently small.

Stability of the resulting waves was partially investigated via direct nu-
merical simulations. The results suggest stability of the constructed solutions
in some velocity intervals. At intermediate values of A and sufficiently small
driving force, the results suggest coexistence of two stable traveling wave
solutions (i.e. bistability) differing by the order in which the springs change
phase within a dimer cell. A glimpse was also given of a different type of
waveform that may (even spontaneously) arise in this simplified yet fairly
rich paradigm of a dynamical lattice, such as the twinkling phases.

A number of interesting questions, however, still remain open in con-
nection to this model. For example, we showed a twinkling phase that bears
some similarities to its analog in the single component model, but it would be
interesting to examine whether there are such solutions in the dimer with no
single component counterpart. On the other hand, determining whether some
form of breather excitation (i.e. exponentially localized in space and periodic
in time) may arise in this model would be of particular value in its own right.
Despite our efforts (from both an analytical and numerical perspective), we
have not yet identified such solutions within this model, however, it would
be interesting to offer a definitive answer to this question as well. Additional
interesting aspects could involve the consideration of non-nearest-neighbor
interactions in the spirit of [46, 47] and the examination of the interplay of
their strength (or of their relative strength to nearest-neighbor ones) with
the role of the mass ratio A explored herein. Finally, it would also be useful
to consider the case of trilinear interactions, as in the work of [49]. This
enables the formation of a non-degenerate spinodal region and should intro-
duce interesting additional ramifications to the diatomic model. Results of
such studies will be reported in future publications.
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Appendix

In this Appendix, we derive explicit expressions for r(£) and s(£). Observe that r(£) in
(12) can be written as

1 c2k?(A + 1) — 4\ sin?

r(e) =wy + i | KL (K, )

pik(E+a—1) gp. etk(E+a)
2m/£ 2m £ dk

Closing the contour of integration by semi-arches at infinity in the upper (lower) half plane
for £ > 0 (£ < 0) in the first integral, £ > 1 — a (£ < 1 — @) in the second and £ > —a
(£ < —a) in the third and applying the residue theorem and Jordan’s lemma, we then
obtain the exact solution for r(£) given by

k
2 et dk;

r(§) = wi+
( 5 AR2(A + 1 — e* e~V (X + e*)) — ) sin® geikf,
keM (c) kL (k,c)
AE2 (A +1 — etf™ — 4\ sin? %eikﬁ N A e keik(&+a—1)
keMay (c) kLy (K, c) A=2(A+1)c? kerie () Lr(k,e) ’
k(A +1—e*> — 4)sin® £ + Ac? A Y ketk(a=1) + 1
C s /7. N\ o
< kEM+(C) kﬁk(k, C) A - 2()\ “+‘ 1)C2 kEM_(C) Ek(k,c) 2
P ¥ keike Ak (A +1— detble=)) —4)sin® & 1
A= . e -,
)\ - 2()\ + ].)C2 kEM+(C) Ek(k, C) kEM_ (C) kﬁk (k, C) 2
A—c? >y keik(E+a) k(A + 1 — dett@=D)) — 4)sin® &
A S > - —
A=2(A+1)e? rern(e) Lrk,€)  peirl (o kLy (K, c)
A > kX (N + 1 — ekl (X 4 %)) — 4\ sin? k ike
AN etk
\A_2(A+ 1)C2 kEM_(C) kﬁk(k, C)
(31)

29

£>21-a

0<é<l—a



for0 < a <1,

r(€) = wi+
( Ac?k?(1 — e™*) — 4\ sin? gez’kg £>1
kEMy (c) kLk(k, c) N
Ak — Adsin® B Ac? keik(E—1)
eht 4 — —————— + A\? -, 0<¢<1
et FLnk.o) a0 0e T Tl <
Ac?k? — 4 sin® & Ac? ke~ 1
3 + + Ac? ——+5 {=0+
reir o RLak0) YA nE T L Tk T2
A 3 Ak (1 — ™) — 4Xsin® & 1 £= 0
)\ —2()\+ 1)02 kEM_(C) kﬁk(k,c) 2’
A B Ac?k?(1 — e~ ) — 4\ sin? ge“@, £ <.
\)\ —2()\+ ].)C2 keM_(c) kﬁk(k,c)
(32)
for a = 0 and
r(€) = wi+
( 5 AR2(A+ 1 — e* e~V (X + e'*)) — 4)sin® geikg
ke My (c) ’ kLy(k, c) ’
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kEMy(c) kLk(k,c) A=2(A+1)e? keM_(c) Ly (k, c)
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(33)

for -1 < a<O.

Note that the contribution of the first integral in (30) along the semi-arches at infinity
is £1/2 when £ = 0. This is the result of model degeneracy which can be removed
by taking interactions of longer range into account [47]. Observe that continuity of the
solution at £ = 0 is ensured by the fact that the sum of all residues at £ = 0 equals negative
one (the contribution at infinity), or

Ak*(A + 1) —4Asin® £ A+ 1)c?

kLy(k,c) X200+ D& 0 (34)

keEM(c)

Here M (c) = M4 (c) U M_(c).
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Together with the switch condition r(0) = w., f(a) = 0 and (17), the continuity
implies the relation (19) between the strains w. at infinity and ¢. Here we used the fact
that the sums of the complex roots in M, (c) cancel out due to the following symmetry
property: if k € M, (c)\Ny(c), then —k € M_(c)\N_(c). Meanwhile, for real roots, if
k € Ny(c), then —k € Ny (c) (similarly for N_), and thus only the sums over real roots

enter (19).

— — ik(é+a)
s =wr + 55 KL (k) ek
T
(35)
_ E/Leik(sﬂ)dk_ i/ k_ ike g
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r T
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The explicit solution for s(¢) is found in a similar way. In this case we write

1 [ck*(A+1)—4Xsin® &
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—c? 22 1) —4\sin® £ ik(£+1)
A1 —¢?) B Ak (A + 1) sin ke A2 3 ke  1<e<0
A=2(A+1)e? keEM_(c) kL (k,c) keM4(c) Ly (k, )
i . 2
A B k2 (A(1 — ei*) — 4\sin geik&, f< 1.
\)\—2()\-1' 1)02 keM_(c) kﬁk(k,C)
(37)
for a = 0 and
s(€) = wyt
( > AR2(A+ 1 — =) (X 4 e~#k)) — 4)sin® & ih(E o) £>
e —a
kEM4 (c) kﬁk(k},C)
AR\ + 1 — e*0-0) () + e=*)) — 4)sin® & N 1 ¢ 40
=, = -«
kEM4(c) kﬁk(k,C) . . .
A= (A+1)c? 3 k(A +1) —4xsin® & 2 k(X 4 e~ k)eik(1—a) 1 f=—a-0
)\ - 2()\ + ].)C2 keM_ (C) kﬁk(k, C) k€M+(C) £k (k, C) 2’
_ 2 2 1.2 _ 02 k —ik\ ik(E+1
- keEM_(c) LAGS) kEMy (c) LAGS)

A1 —c?) A2 A+ 1—e ) —4)sin? & keik(E+1)
A=c) 2 pik(E4a) _ )2 ke i ce<o
A=20A+ 1) e (o kﬁk.(ka c) . reity (c) Lr(k,c)

A B A2\ + 1 — ek (X 4 e~ik)) — 4\ sin? geik(Ha) f< 1
\)\—2()\-1' 1)02 keEM_(c) kﬁk(k),C) ’ -
(38)

for —1 < a < 0. Note that the continuity at £ = —a follows from (34). Together with the

switch condition s(—a) = w, and (17) it again yields (19).
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