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Abstract

In this report, a partitioned time stepping algorithm which allows different time
steps in the fluid region and the porous region is analyzed for the fully evolutionary
Stokes-Darcy problem. This method requires only one, uncoupled Stokes and Darcy
sub-physics and sub-domain solve per time step. Under a modest time step restriction
of the form 4t ≤ C where C = C(physical parameters) we prove zero-stability of
the method. We also derive error estimates. Numerical tests given confirming the
convergence theory and demonstrating the computational efficiency of the partitioned
method.
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1 Introduction

The transport of substances coupling between surface water and groundwater is an

important problem of great current interest. The essential features of estimating penetra-

tion of a plume of pollution from surface water to ground water and remediation thereafter

are that (i) the coupled problems in the fluid and porous media sub-regions are both in-

herently time dependent, (ii) the flows in the two regions act with different characteristic

speeds, (iii) the physical processes are sufficiently different that codes optimized for each

individual sub-process ultimately will need to be used to solve the coupled problem, and

(iv) the large domains involved and the need to compute for several turn-over times to

obtain reliable statistics requires calculations over long time intervals for large systems (of-

ten arising from relatively coarse meshes). With these issues in mind, we analyze herein
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an asynchronous, uncoupled, partitioned method for the fully evolutionary Stokes-Darcy

problem. The method allows different time steps in the two subregions (such methods are

often called ”asynchronous coupling” in geophysics) and requires only one, uncoupled Stokes

solve and one Darcy solve per time step (with no iteration or construction of a fully coupled

problem). The partitioning is based on simply lagging the interfacial coupling terms follow-

ing a method analyzed by Mu and Zhu [16], see also [1] for its use in other applications.

Connecting the different time steps at the interface is adapts an idea developed by Connors

and Howell [6] for atmosphere-ocean coupling in climate models. The essential difficulty of

both lagging terms and interpolation between meshes and time steps is doing so without

creation of non-physical system energy.

The mathematical model consists of the evolutionary Stokes equations in the fluid region

coupled with the evolutionary Darcy equations in the porous medium, [8, 12, 14, 17, 18].

The key part is the interface coupling conditions of conservation of mass across the interface,

balance of forces and the (tangential) Beavers-Joseph-Saffman conditions [2]. Consider thus

a Stokes flow in Ωf coupled with a porous media flow in Ωp, where Ωf , Ωp ⊂ Rd(d = 2 or 3)

are bounded domains, Ωf ∩ Ωp = Ø, and Ωf ∩ Ωp = Γ. Denote by Ω = Ωf ∪ Ωp, nf and np

the unit outward normal vectors on ∂Ωf and ∂Ωp, respectively, and τi, i = 1, · · · , d− 1, the

unit tangential vectors on the interface Γ. Note that np = −nf on Γ, see Figure 1 below.

Figure 1: The global domain Ω consisting of the fluid region Ωf and the porous media region

Ωp, separated by the interface Γ.

Let T ≥ 0 be a finite time, the fluid flow is governed by the Stokes equations on Ωf :

ut − ν∆u +∇p = f in Ωf × (0, T ], (1.1)

∇ · u = 0 in Ωf × (0, T ], (1.2)

u(x, 0) = u0 in Ωf , (1.3)

u = 0 on ∂Ωf \ Γ, (1.4)
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where u(x, t) represents the velocity of the fluid flow in Ωf , p(x, t) the pressure, f(x, t) the

external force, and ν the kinematic viscosity.

The porous media flow is governed by the following equations on Ωp:

S0φt +∇ · q = g in Ωp × (0, T ], (1.5)

q = −K∇φ in Ωp × (0, T ], (1.6)

up =
q

n
in Ωp × (0, T ], (1.7)

φ(x, 0) = φ0 in Ωp, (1.8)

φ = 0 on ∂Ωp \ Γ, (1.9)

where φ is the piezometric head, q is the specific discharge defined as the volume of the fluid

flowing per unit time through a unit cross-sectional area normal to the direction of the flow,

ξ is the fluid velocity in Ωp, S0 is the specific mass storativity coefficient, K represents the

hydraulic conductivity tensor, n is the volumetric porosity, and g is the source term. Note

that φ = z + Pp

ρg
, the sum of elevation head plus pressure head, where Pp is the pressure

of the fluid in Ωp, ρ is the density of the fluid, g is the gravitational acceleration. (The

usage of g as gravitational vector or source term will be clear from the context in which it

occurs.). Further, z is the elevation from a reference level. The presentation of the coupled

problem with separate discretizations and differing time steps involves substantial notation.

We therefore make some simplifying assumptions to reduce the notational complexity. In

particular, we assume z = 0 and that K = diag(K, · · · , K) with K ∈ L∞(Ωp), K > 0, which

implies that the porous media is homogeneous. By using Darcy’s law, (1.5) can be rewritten

in the parabolic form

S0φt −∇ · (K∇φ) = g in Ωp × (0, T ], (1.10)

φ(x, 0) = φ0 in Ωp. (1.11)

For the Stokes-Darcy model, the interface coupling conditions is a key part, the following

interface conditions have been extensively considered and studied:

u · nf + up · np = 0 on Γ× (0, T ], (1.12)

p− νnf
∂u

∂nf

= ρgφ on Γ× (0, T ], (1.13)

−ντi
∂u

∂nf

=
α√

τi ·Kτi

u · τi, i = 1, · · · , d− 1 on Γ× (0, T ], (1.14)

where α is a positive parameter depending on the properties of the porous medium and

must be experimentally determined. The first interface condition (1.12) ensures the mass

conservation across the interface Γ, and using (1.6) and (1.7), it can be rewritten as

u · nf =
K

n

∂φ

∂np

on Γ× (0, T ]. (1.15)
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The second condition (1.13) is the balance of the normal forces across the interface.

In the last ten years there has been an explosion of work on numerical analysis of cou-

pling surface water to ground water. For a comprehensive overview of other work on this

important problem, see [9] and the 125 references therein. Much of the work has studied

the equilibrium problem, e.g., [8, 9, 14]. Various quasi-static models (not considered herein)

have also been proposed with time dependence in one region and in the other at equilibrium.

To our knowledge, justification of the quasi-static assumption based on the rates of return

to equilibrium in either sub problem in the context of the fully evolutionary setting is still

open. Among the many fewer papers (so far) on the numerical analysis of the fully evolution-

ary Stokes-Darcy problem (considered herein), Mu and Zhu [16] study a partitioned method

which we build upon herein. Cao, Gunzburger, Hu, Hua, Wang and Zhao [3, 4] study a fully,

monolithically coupled implicit method for the much harder and physically more accurate

case of Beavers-Joseph coupling conditions (without Saffman’s simplification).

2 Variational formulation of the continuous problem

Denote W = Hf ×Hp and Q = L2(Ωf ), where

Hf = {v ∈ (H1(Ωf ))
d : v = 0 on ∂Ωf \ Γ}, Hp = {ψ ∈ H1(Ωp) : ψ = 0 on ∂Ωp \ Γ}.

The space L2(D), where D = Ωf or Ωp, is equipped with the usual L2−scalar product (·, ·)
and L2−norm || · ||L2 , || · ||0. The spaces Hf and Hp are equipped with the following norms:

||u||Hf
= || 5 u||0 =

√
(∇u,∇u) ∀ u ∈ Hf , (2.1)

||φ||Hp = || 5 φ||0 =
√

(∇φ,∇φ) ∀ u ∈ Hp. (2.2)

We equip the space W with the following norms: ∀ u = (u, φ) ∈ W ,

||u||0 =
√

n(u,u)Ωf
+ ρgS0(φ, φ)Ωp , (2.3)

||u||W =
√

nν(u,u)Ωf
+ ρgK(φ, φ)Ωp ≈ ||∇u||0, (2.4)

where (·, ·)D refers to the scalar product (·, ·) in the corresponding domain D for D = Ωf or

Ωp, and ≈ refers to equivalent norms.

For simplicity, we assume n, ρ, g, S0, ν and K are constants, without loss of generality we

assume n, ρ, g and S0 are positive and O(1), in particular that

K(x) ≥ kmin > 0.

The given data u0, φ0, f and g are assumed to be smooth enough.



DECOUPLED SCHEME WITH DIFFERENT TIME STEP SIZES 5

The weak formulation of the time-dependent Stokes-Darcy model reads as follows: find

u = (u, φ) ∈ W and p ∈ Q, such that , ∀ t ∈ (0, T ],

(ut,v) + a(u,v) + b(v, p) = (f ,v) in Ω,

b(u, q) = 0 in Ω, (2.5)

u(0) = u0 on ∂Ω,

where

a(u,v) = af (u, v) + ap(φ, ψ) + aΓ(u,v),

af (u, v) = (ν∇u,∇v)Ωf
+

d−1∑
i=1

∫

Γ

α√
τi ·Kτi

(u · τi)(v · τi),

ap(φ, ψ) = (K∇φ,∇ψ)Ωp ,

aΓ(u,v) =

∫

Γ

φv · nf − ψu · nf ,

b(v, p) = −(p, divv)Ωf
,

(f ,v) = (f, v)Ωf
+ (g, ψ)Ωp .

The well-posedness of the mixed Stokes-Darcy model(2.5) can be found in [7, 8, 14] for the

stationary case and is assumed to hold similarly for the non-stationary case. In the paper,

we focus on its numerical solution.

There is one known partitioned method of Mu and Zhu [16] for uncoupling the Stokes-

Darcy problem in which subdomain terms are discretized by the implicit method in time

and the coupling terms by the explicit method. Herein we extend the partitioned method

to allow for different size time steps for the decoupled subproblems, say 4t on Ωf and 4s

on Ωp, with any integer ratio n = 4s/4t between them. The reason for using different

time step size is that physical processes happen at different rate, e.g., [10] whose analysis is

consistent with the intuition that fluid flow is faster than that in the porous medium. The

methods extend immediately to the case where the regions of small and large time steps are

reversed. For the other point of view, the natural CFL condition demands v4t
h
≤ 1 where v

denote the velocity in the sub-domain. Since different domain have different flow velocities,

practical computing often will require different time steps and even possibly adapting 4t

separately in each sub-region..

It is known [7, 16] that af (·, ·), ap(·, ·), and aΓ(·, ·) are continuous and coercive and a(·, ·)
is continuous. coercive

af (u, v) ≤ C||u||Hf
||v||Hf

, af (v, v) ≥ ν||v||2Hf
, ∀ u, v ∈ Hf , (2.6)

ap(φ, ψ) ≤ C||φ||Hp ||ψ||Hp, ap(ψ, ψ) ≥ kmin||ψ||2Hp
, ∀ φ, ψ ∈ Hp, (2.7)

where α0 is a positive constant. Furthermore, aΓ(·, ·) satisfy the following properties:

aΓ(u,v) = −aΓ(v,u), aΓ(u,u) = 0, ∀ u,v ∈ W. (2.8)
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There are many appealing reasons as discussed in [15] that have led to active research

models so that existing single-model solvers can be applied locally with little extra compu-

tational and software overhead. In this paper, a decoupling approach with different time

step in each domain is proposed for mixed Stokes-Darcy problem. The rest of the paper

is organized as follows. Both coupled and decoupled algorithms are presented in Section 3.

The zero-stability of the decoupled algorithm is given in Section 4. In Section 5, we analyze

the error estimation. Numerical tests are reported in Section 6, followed by conclusions in

Section 7.

3 Numerical algorithms

We consider a triangulation Th of the domain Ωf ∪Ωp, depending on a positive parameter

h > 0, made up of triangles if d = 2, or tetrahedra if d = 3.

Let Wh = Hfh ×Hph ⊂ W and Qh ⊂ Q denote the finite element subspaces. The finite

element spaces Hfh and Qh approximating velocity and pressure in the fluid flow region are

assumed to satisfy the well known discrete inf-sup condition: there exists a positive constant

β, independent of h, such that ∀ qh ∈ Qh,∃ vh ∈ Wh, vh 6= 0,

b(vh, qh) ≥ β||vh||W ||qh||Q.

The following estimates on the coupling term are useful in our analysis.

Lemma 3.1. ∀u,v ∈ W , there exists C ≥ 0, such that ∀ε ≥ 0,

|aΓ(u,v)| ≤ 1

4ε
||u||2W + Cε||v||2W . (3.1)

Further, we have ∀ u,v ∈ W , there exists C ≥ 0 such that .

|aΓ(u,v)| ≤ 1

4ε
(||u||2W + ||v||2W ) + Cε(||u||20 + ||v||20). (3.2)

In addition, if the finite element spaces satisfy the inverse inequality, then ∀ uh, vh ∈ Wh,

there exists C ≥ 0 such that .

|aΓ(uh,vh)| ≤ 1

4ε
||uh||2W + Cεh−1||vh||20. (3.3)

Proof. (3.1) is proven in [16]. For (3.2), the proof is the same but uses a bit more care in ap-

plying trace + embedding + Poincaré inequality (in both regions). (3.3) follows immediately

from (3.1) and is also proven in [16]. 2
We also introduce a subspace Vh of Wh defined by

Vh = {vh ∈ Wh : b(vh, qh) = 0 ∀ qh ∈ Qh},
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and correspondingly, as shown in [16], define a projection operator Ph : (w(t), p(t)) ∈
(W,Q) 7→ (Phw(t), Php(t)) ∈ (Wh, Qh), ∀t ∈ [0, T ] by

a(Phw(t),vh) + b(vh, Php(t)) = a(w(t),vh) + b(vh, p(t)) ∀ vh ∈ Wh, (3.4)

b(Phw(t), qh) = 0 ∀ qh ∈ Qh. (3.5)

Apparently, Ph is linear operator. Furthermore, under a certain smoothness assumption

on (w(t), p(t)), the following approximation properties hold:

||Phw(t)−w(t)||0 ≤ Ch2,

||Phw(t)−w(t)||W ≤ Ch,

||Php(t)− p(t)||0 ≤ Ch.

From now on, we always assume that (u(t), φ(t)) ∈ (H2(Ωf )
d, H2(Ωp)), (ut(t), φt(t)) ∈

(H1(Ωf )
d, H1(Ωp)) and (utt(t), φtt(t)) ∈ (L2(Ωf )

d, L2(Ωp)) for the solutions of (2.5).

3.1 The monolithically coupled, implicit method

In this section, we provide a monolithically coupled scheme which is used for comparison.

Choose a uniform distribution of discrete time level,

Q = {0 = t0, t1, t2, · · · , tN = T},
where tm = m4t,m = 0, 1, 2, · · · , N for4t = T

N
. Here (uh,m, ph,m, φh,m) denotes the discrete

approximation to (u(tm), p(tm), φ(tm)).

Algorithm 3.1(Coupled scheme) Find uh,m+1 = (uh,m+1, φh,m+1) ∈ Wh and ph,m+1 ∈
Qh,m = 0, · · · , N − 1, such that ∀ v = (vh, ψh) ∈ Wh and ∀ qh ∈ Qh,

(
uh,m+1 − uh,m

4t
,v) + a(uh,m+1,v) + b(v, ph,m+1) = fm+1(v), (3.6)

b(uh,m+1, qh) = 0, (3.7)

uh,0 = u0. (3.8)

At each time step, the discrete model (3.6)-(3.8) is equivalent to two coupled problem that

correspond to a Stokes problem in Ωf and a Darcy problem in Ωp, respectively, with associ-

ated the common boundary conditions on Γ. More specifically, the discrete Stokes problem in

the fluid region Ωf reads as follows: Find uh,m+1 ∈ Hfh and ph,m+1 ∈ Qh,m = 0, · · · , N − 1,

such that ∀ vh ∈ Hfh and qh ∈ Qh,

(
uh,m+1 − uh,m

4t
, vh) + af (u

h,m+1, vh) + b(vh, p
h,m+1) +

∫

Γ

φh,m+1vh · nf = fm+1(v), (3.9)

b(uh,m+1, qh) = 0, (3.10)

uh,0 = u0, (3.11)
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and the discrete Darcy problem in the porous media region Ωp reads as follows: Find φh,m+1 ∈
Hph,m = 0, · · · , N − 1, such that ∀ ψ ∈ Hph,

(
φh,m+1 − φh,m

4t
, ψh) + ap(φ

h,m+1, ψh)−
∫

Γ

ψhu
h,m+1 · nf = gm+1(ψh), (3.12)

φh,0 = φ0. (3.13)

3.2 A Partitioned, Decoupled Scheme with different time step size

To streamline our notation further, we shall suppress the subscript ”h” and replace

um
h , φm

h , pm
h by um, φm, pm, respectively. First, we choose discrete time levels

P = {0 = t0, t1, t2, · · · , tN = T},

where tm = m4t, m = 0, 1, 2, · · · , N for 4t = T
N

. Denote by

S = {tm0 , tm1 , · · · , tmM} ⊂ P ,

a subset satisfying tmk = kn4t such that n ∈ N is fixed and Mn = N . The time

step size on Ωp is given a separate notations hereafter, 4s = n4t. For tm, tmk ∈ [0, T ],

(um, pm, φmk) will denote the discrete approximation to (u(tm), p(tm), φ(tmk)). The approx-

imations (um+1, pm+1) ∈ (Hfh, Qh), for m = m0,m0 + 1, · · · , N − 1 and φmk+1 ∈ Hph for

k = 0, 1, · · · ,M − 1 are calculated using Algorithm 3.2. In practice only the data at time

t0 would need to be provided. One important feature of Algorithm 3.2 is that (um+1, pm+1)

can be calculated for m = mk,mk + 1, · · · ,mk+1 − 1 in parallel with φmk+1 .

Algorithm 3.2(Decoupled scheme)

• Find (um+1, pm+1) ∈ (Hfh, Qh), with m = mk,mk +1, · · · ,mk+1−1, such that ∀(v, q) ∈
(Hfh, Qh):

(
um+1 − um

4t
, v) + af (u

m+1, v) + b(v, pm+1) = (fm+1, v)−
∫

Γ

φmkv · nf , (3.14)

b(um+1, q) = 0, (3.15)

u0 = u0, (3.16)

with the small time step size 4t.

• Set Smk = 1
n

∑mk+1−1
i=mk

ui,
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• find φmk+1 ∈ Hph, such that ψ ∈ Hph:

(
φmk+1 − φmk

4s
, ψ) + ap(φ

mk+1 , ψ) = (gmk+1 , ψ) +

∫

Γ

ψSmknf , (3.17)

φm0 = φ0, (3.18)

with the large time step size 4s = n4t.

• Set k = k + 1 and repeat until k = M − 1.

4 Zero-Stability of the method

In this section, under a modest time step restriction of the form 4t ≤ C where C =

C(physical parameters) we prove the 0-stability (possibly including terms like exp(aT ))

over bounded time intervals [0, T ] of the partitioned method Algorithm 3.2.

Theorem 4.1 (0-Stability) Choose the initial data φm0 = φ0, um0 = u0, and φmk+1+J+1 =

φmk+1 , gmk+1+J+1 = gmk+1 , (−1 ≤ J ≤ n− 2, 0 ≤ k ≤ l). There is C(Ω) < ∞ such that if

C(Ω)4t√
νkmin

< 1,

for −1 ≤ l ≤ M − 1, we have

||uml+1+J+1||20 +
ν4t

2

ml+1+J∑
i=0

||ui+1||2Hf
+ ||φml+1+J+1||20 +

kmin4t

4n

ml+1+J∑
i=0

||φi+1||2Hp

≤ C(T )

[
4t

ν

ml+1+J∑
i=0

||f i+1||2Hf
′ +

4t

kmin

ml+1+J∑
i=0

||gi+1||2Hp
′

]

+
4t

2
(ν||u0||2Hf

+ kmin||φ0||2Hp
) + ||u0||20 + ||φ0||20. (4.1)

Proof. Taking v = 24tum+1 in (3.14), using the divergence-free property, sum over m =

mk,mk + 1, · · · ,mk+1 − 1,

||umk+1||20 +

mk+1−1∑
i=mk

||ui+1 − ui||20 − ||umk ||20 + 24t

mk+1−1∑
i=mk

af (u
i+1, ui+1)

= 24t

mk+1−1∑
i=mk

(f i+1, ui+1)− 24t

∫

Γ

φmk(

mk+1−1∑
i=mk

ui+1) · nf . (4.2)
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Taking ψ = 24sφmk+1 = 24tnφmk+1 = 24t
∑mk+1−1

i=mk
φmk+1 in (3.17),

||φmk+1 ||20 + ||φmk+1 − φmk ||20 − ||φmk+1 ||20 + 24t

mk+1−1∑
i=mk

ap(φ
mk+1 , φmk+1)

= 24t

mk+1−1∑
i=mk

(gmk+1 , φmk+1) + 24t

∫

Γ

φmk+1(

mk+1−1∑
i=mk

ui) · nf . (4.3)

Combining (4.2) and (4.3), we obtain

||umk+1||20 +

mk+1−1∑
i=mk

||ui+1 − ui||20 − ||umk ||20 + 24t

mk+1−1∑
i=mk

af (u
i+1, ui+1)

+ ||φmk+1||20 + ||φmk+1 − φmk ||20 − ||φmk ||20 + 24t

mk+1−1∑
i=mk

ap(φ
mk+1 , φmk+1)

= 24t

mk+1−1∑
i=mk

(f i+1, ui+1) + 24t

mk+1−1∑
i=mk

(gmk+1 , φmk+1) (4.4)

− 24taΓ(φmk ,

mk+1−1∑
i=mk

ui; φmk+1 ,

mk+1−1∑
i=mk

ui+1),

here and the following, we define aΓ(φ, u; ψ, v) =
∫

Γ
φv · nf − ψu · nf .

The first two terms of RHS (right hand side) in (4.4) is bound by Young and Hölder

inequalities,

24t

mk+1−1∑
i=mk

(f i+1, ui+1) + 24t

mk+1−1∑
i=mk

(gmk+1 , φmk+1)

≤ C4t

ν

mk+1−1∑
i=mk

||f i+1||2Hf
′ +

C4t

kmin

mk+1−1∑
i=mk

||gmk+1||2Hp
′

+
ν4t

2

mk+1−1∑
i=mk

||ui+1||2Hf
+

kmin4t

2

mk+1−1∑
i=mk

||φmk+1||2Hp
.
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The remains of RHS in (4.4) have the following bound by (3.2)

−24taΓ(φmk ,

mk+1−1∑
i=mk

ui; φmk+1 ,

mk+1−1∑
i=mk

ui+1)

≤ 4t

4
(ν||

mk+1−1∑
i=mk

ui+1||2Hf
+ kmin||φmk+1||2Hp

+ ν||
mk+1−1∑
i=mk

ui||2Hf
+ kmin||φmk ||2Hp

)

+
C(Ω)4t√

νkmin

(||
mk+1−1∑
i=mk

ui+1||20 + ||φmk+1 ||20 + ||
mk+1−1∑
i=mk

ui||20 + ||φmk ||20)

≤ 4t

2
(

mk+1−1∑
i=mk

ν||ui+1||2Hf
+ ν||umk ||2Hf

+ kmin||φmk+1||2Hp
+ kmin||φmk ||2Hp

)

+
2C(Ω)4t√

νkmin

(

mk+1∑
i=mk

||ui||20 + ||φmk+1||20 + ||φmk ||20).

Combining the above inequalities, using Holder’s and Young’s inequality, we obtain

||umk+1||20 +

mk+1−1∑
i=mk

||ui+1 − ui||20 − ||umk ||20 + ν4t

mk+1−1∑
i=mk

||ui+1||2Hf

− ν4t

2
||umk ||2Hf

+ ||φmk+1 ||20 + ||φmk+1 − φmk ||20 − ||φmk ||20

+ kmin4t

mk+1−1∑
i=mk

||φmk+1||2Hp
− kmin4t

2
||φmk ||2Hp

≤ C4t

ν

mk+1−1∑
i=mk

||f i+1||2Hf
′ +

C4t

kmin

||gmk+1||2Hp
′ (4.5)

+
2C(Ω)4t√

νkmin

(

mk+1∑
i=mk

||ui||20 + ||φmk+1||20 + ||φmk ||20).

Sum over k = 0, 1, · · · , l, with 0 ≤ l ≤ M − 1 we have

||uml+1||20 +
ν4t

2

l∑

k=0

mk+1−1∑
i=mk

||ui+1||2Hf
+ ||φml+1||20 +

kmin4t

2

l∑

k=0

mk+1−1∑
i=mk

||φmk+1||2Hp

≤ 2C(Ω)4t√
νkmin

l∑

k=0

(

mk+1−1∑
i=mk

||ui+1||20 + ||φmk+1||20) (4.6)

+
C4t

ν

l∑

k=0

mk+1−1∑
i=mk

||f i+1||2Hf
′ +

C4t

kmin

l∑

k=0

mk+1−1∑
i=mk

||gmk+1||2Hp
′

+
4t

2
(ν||um0||2Hf

+ kmin||φm0||2Hp
) + ||um0||20 + ||φm0||20.
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Taking v = 24tum+1 in (3.14), using the divergence-free property again, sum over m =

ml+1,ml+1 + 1, · · · ,ml+1 + J, (0 ≤ J ≤ n− 2)

||uml+1+J+1||20 +

ml+1+J∑
i=ml+1

||ui+1 − ui||20 − ||uml+1||20 + 24t

ml+1+J∑
i=ml+1

af (u
i+1, ui+1)

= 24t

ml+1+J∑
i=ml+1

(f i+1, ui+1)− 24t

∫

Γ

φml+1(

ml+1+J∑
i=ml+1

ui+1) · nf

≤ C4t

ν

ml+1+J∑
i=ml+1

||f i+1||2Hf
′ +

ν4t

2

ml+1+J∑
i=ml+1

||ui+1||2Hf
(4.7)

+
4t

4
(

ml+1+J∑
i=ml+1

ν||ui+1||2Hf
+ kmin||φml+1||2Hp

)

+
C(Ω)4t√

νkmin

(

ml+1+J∑
i=ml+1

||ui+1||20 + ||φml+1 ||20).

Rearrange the inequality, yield

||uml+1+J+1||20 +

ml+1+J∑
i=ml+1

||ui+1 − ui||20 − ||uml+1||20 +
ν4t

2

ml+1+J∑
i=ml+1

||ui+1||2Hf

≤ C(Ω)4t√
νkmin

ml+1+J∑
i=ml+1

||ui+1||20 +
C4t

ν

ml+1+J∑
i=ml+1

||f i+1||2Hf
′ (4.8)

+
kmin4t

4
||φml+1||2Hf

+
C(Ω)4t√

νkmin

||φml+1||20.

Considering the special case, when l = −1, then φml+1 = φ0, uml+1 = u0, the last equation

can be written as follows:

||uJ+1||20 +
J∑

i=0

||ui+1 − ui||20 +
ν4t

2

J∑
i=0

||ui+1||2Hf

≤ C(Ω)4t√
νkmin

J∑
i=0

||ui+1||20 +
C4t

ν

J∑
i=0

||f i+1||2Hf
′

+
kmin4t

4
||φ0||2Hf

+
C(Ω)4t√

νkmin

||φ0||20 + ||u0||20. (4.9)

Add both sides by kmin4t
4

||φ0||2Hp
+ ||φ0||20, and set φJ+1 = φ0, gJ+1 = g0, (0 ≤ J ≤ n−2)
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since 4t
4n

∑J
i=0 ||φi+1||2Hf

≤ 4t
4
||φ0||2Hf

, then,

||uJ+1||20 +
J∑

i=0

||ui+1 − ui||20 +
ν4t

2

J∑
i=0

||ui+1||2Hf
+ ||φJ+1||20 +

kmin4t

4n

J∑
i=0

||φi+1||2Hf

≤ C(Ω)4t√
νkmin

J∑
i=0

(||ui+1||20 + ||φi+1||20) +
C4t

ν

J∑
i=0

||f i+1||2Hf
′ +

C4t

kmin

J∑
i=0

||gi+1||2Hp
′

+
4t

2
(ν||u0||2Hf

+ kmin||φ0||2Hp
) + ||u0||20 + ||φ0||20. (4.10)

Combine (4.6) and (4.8), and set φmk+1+J+1 = φmk+1 , gmk+1+J+1 = gmk+1 , (−1 ≤ J ≤
n− 2, ∀ l ≥ −1), we arrive at

||uml+1+J+1||20 +
ν4t

2

ml+1+J∑
i=0

||ui+1||2Hf
+ ||φml+1+J+1||20 +

kmin4t

4n

ml+1+J∑
i=0

||φi+1||2Hp

≤ C(Ω)4t√
νkmin

ml+1+J∑
i=0

(||ui+1||20 + ||φi+1||20) +
C4t

ν

ml+1+J∑
i=0

||f i+1||2Hf
′

+
C4t

kmin

ml+1+J∑
i=0

||gi+1||2Hp
′ +

4t

2
(ν||um0||2Hf

+ kmin||φm0||2Hp
)

+ ||um0 ||20 + ||φm0||20. (4.11)

Finally, choosing 4t, such that C(Ω)4t√
νkmin

< 1, which is required to apply th e discrete

Gronwall inequality to (4.11), (which contributes a C(T) term). 2

5 Convergence Analysis

In this section, we analyze the error in Algorithm 3.2. We will use the following

notations. Define um
c = u(tm), φm

c = φ(tm), pm
c = p(tm). Following (3.4)-(3.5), we de-

fine um = Phu(tm), φm = Phφ(tm), pm = Php(tm), then we set em
c = um

c − um, εm
c =

φm
c − φm, ηm

c = pm
c − pm, and em = um − um, εm = φm − φm, ηm = pm − pm. Obviously,

we observe that u(tm) − um = em
c + em and φ(tm) − φm = εm

c + εm, from approximation

properties, we have ||em
c ||0 + ||εm

c ||0 ≤ Ch2, ||em
c ||1 + ||εm

c ||1 ≤ Ch.

Then, by the model (2.5) and (3.4)-(3.5), for (v, q) ∈ (Wh, Qh), we have the following

equations:

(
um+1 − um

4t
, v) + af (um+1, v) + b(v, pm+1) = −(wm+1

f,t , v) + (fm+1, v)−
∫

Γ

φm+1v · nf (5.1)

b(um+1, q) = 0. (5.2)
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(
φm+1 − φm

4t
, ψ) + ap(φm+1, ψ) = −(wm+1

p,t , ψ) + (gm+1, ψ) +

∫

Γ

ψum+1 · nf , (5.3)

where

wm+1
f,t =

um+1 − um

4t
− ut(t

m+1)

= [
um+1 − um

4t
− u(tm+1)− u(tm)

4t
] + [

u(tm+1)− u(tm)

4t
− ut(t

m+1)]

= wm+1
f,t,1 + wm+1

f,t,2 ,

and

wm+1
p,t =

φm+1 − φm

4t
− φt(t

m+1)

= [
φm+1 − φm

4t
− φ(tm+1)− φ(tm)

4t
] + [

φ(tm+1)− φ(tm)

4t
− φt(t

m+1)]

= wm+1
p,t,1 + wm+1

p,t,2 .

It is easy to verify that the following properties of wm+1
f,t,1 , wm+1

f,t,2 , wm+1
p,s,1 and wm+1

p,s,2 hold:

from the definition

wm+1
f,t,1 = (Ph − I)

u(tm+1)− u(tm)

4t
=

1

4t

∫ tm+1

tm
(Ph − I)ut(t)dt,

we have

||wm+1
f,t,1 ||20 =

1

4t2

∫

Ω

(

∫ tm+1

tm
(Ph − I)ut(t)dt)2dx

≤ 1

4t2

∫

Ω

∫ tm+1

tm
((Ph − I)ut(t))

2dt

∫ tm+1

tm
12dtdx

≤ 1

4t

∫ tm+1

tm
||(Ph − I)ut(t)||20dt. (5.4)

Similarly,

4twm+1
f,t,2 = u(tm+1)− u(tm)−4tut(t

m+1) = −
∫ tm+1

tm
(t− tm)utt(t)dt,

which means

||wm+1
f,t,2 ||20 =

1

4t2

∫

Ω

(

∫ tm+1

tm
(t− tm)utt(t)dt)2dx

≤ 1

4t2

∫

Ω

∫ tm+1

tm
(utt(t))

2dt

∫ tm+1

tm
(t− tm)2dtdx ≤ 4t

∫ tm+1

tm
||utt||20dt. (5.5)
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The same as wm+1
p,t,1 , wm+1

p,t,2 , while consider the large time step size 4s, then,

||wmk+1

p,s,1 ||20 ≤
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||20ds, (5.6)

and

||wmk+1

p,s,2 ||20 ≤ 4s

∫ tmk+1

tmk

||φss||20ds. (5.7)

By the equivalence between ||u||Hf
and ||∇u||0, ||φ||Hp and ||∇φ||0,

||um+1 − um||2Hf
= ||Ph(u(tm+1)− u(tm))||2Hf

≤ C||u(tm+1)− u(tm)||2Hf

≤ C

∫

Ωf

(∇(u(tm+1)− u(tm)))2dx ≤ C

∫

Ωf

(

∫ tm+1

tm
∇utdt)2dx

≤ C

∫

Ωf

∫ tm+1

tm
∇u2

t dt ∗
∫ tm+1

tm
1dtdx ≤ C4t

∫ tm+1

tm
||ut||2Hf

dt. (5.8)

Do the same as (5.8), we have

||φm+1 − φm||2Hp
≤ C4t

∫ tm+1

tm
||φt||2Hp

dt, (5.9)

||umk+1
− umk

||2Hf
≤ C4s

∫ tmk+1

tmk

||us||2Hf
ds, (5.10)

||φmk+1
− φmk

||2Hp
≤ C4s

∫ tmk+1

tmk

||φs||2Hp
ds. (5.11)

Consider small time step size 4t, subtract (5.1) from (3.14), we obtain

(
em+1 − em

4t
, v) + af (e

m+1, v) + b(v, ηm+1)

= −(wm+1
f,t , v)−

∫

Γ

(φm+1 − φm)v · nf −
∫

Γ

(φm − φmk)v · nf , (5.12)

b(em+1, q) = 0.

Consider larger time step size 4s = n4t, subtract (5.3) from (3.17), we obtain

(
εmk+1 − εmk

4s
, ψ) + ap(ε

mk+1 , ψ)

= −(wmk+1
p,s , ψ) +

∫

Γ

ψ(umk+1
− umk

) · nf +

∫

Γ

ψ(umk
− Smk) · nf . (5.13)

Theorem 5.1. Suppose the true solution is smooth, the initial approximations are suffi-

ciently accurate and that the time step and mesh width 4t, h satisfy C̃4th−1 ≤ 1, where C̃
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depends on the parameters ν, kmin and the domain Ω. Then, the following estimate for the

error at the larger time steps (the synchronization points) holds:

||eml+1 ||20 + ν4t

l∑

k=0

mk+1−1∑
i=mk

||ei+1||2Hf
+ ||εml+1||20 + kmin4t

l∑

k=0

mk+1−1∑
i=mk

||εmk+1||2Hp

≤ C(T )(4t2 + h4). (5.14)

Proof. Taking v = 24tem+1 in (5.12), using the divergence-free property, sum over m =

mk,mk + 1, · · · ,mk+1 − 1, yield

||emk+1||20 +

mk+1−1∑
i=mk

||ei+1 − ei||20 − ||emk ||20 + 24t

mk+1−1∑
i=mk

af (e
i+1, ei+1)

= −24t

mk+1−1∑
i=mk

(wi+1
f,t , ei+1)− 24t

∫

Γ

mk+1−1∑
i=mk

(φi+1 − φi)e
i+1 · nf (5.15)

− 24t

∫

Γ

mk+1−1∑
i=mk

(φi − φmk)ei+1 · nf .

Taking ψ = 24tnεmk+1 = 24t
∑mk+1−1

i=mk
εmk+1 in (5.13),

||εmk+1||20 + ||εmk+1 − εmk ||20 − ||εmk+1 ||20 + 24t

mk+1−1∑
i=mk

ap(ε
mk+1 , εmk+1)

= −24t

mk+1−1∑
i=mk

(wmk+1
p,s , εmk+1) + 24t

∫

Γ

mk+1−1∑
i=mk

εmk+1(umk+1
− umk

) · nf (5.16)

+ 24t

∫

Γ

mk+1−1∑
i=mk

εmk+1(umk
− ui) · nf .
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Combining the above equalities (5.15) and (5.16), we obtain

||emk+1 ||20 +

mk+1−1∑
i=mk

||ei+1 − ei||20 − ||emk ||20 + 24t

mk+1−1∑
i=mk

af (e
i+1, ei+1)

+ ||εmk+1||20 + ||εmk+1 − εmk ||20 − ||εmk ||20 + 24t

mk+1−1∑
i=mk

ap(ε
mk+1 , εmk+1)

= −24t

mk+1−1∑
i=mk

(wi+1
f,t , ei+1)− 24t

mk+1−1∑
i=mk

(wmk+1
p,s , εmk+1)

− 24t

mk+1−1∑
i=mk

aΓ(φi+1 − φi, umk+1
− umk

; εmk+1 , ei+1)

− 24t

mk+1−1∑
i=mk

aΓ(φi − φmk , umk
− ui; εmk+1 , ei+1). (5.17)

The first term of RHS in (5.17) is bound by Young, Poincaré and Hölder inequalities

− 24t

mk+1−1∑
i=mk

(wi+1
f,t , ei+1)− 24t

mk+1−1∑
i=mk

(wmk+1
p,s , εmk+1)

≤ 4t

4

mk+1−1∑
i=mk

(ν||ei+1||2Hf
+ kmin||εmk+1 ||2Hp

) + C(Ω)4t

mk+1−1∑
i=mk

(
1

ν
||wi+1

f,t ||20 +
1

kmin

||wmk+1
p,s ||20)

≤ 4t

4

mk+1−1∑
i=mk

(ν||ei+1||2Hf
+ kmin||εmk+1 ||2Hp

)

+ C(Ω)4t

mk+1−1∑
i=mk

(
1

ν
||wi+1

f,t,1||20 +
1

ν
||wi+1

f,t,2||20 +
1

kmin

||wmk+1

p,s,1 ||20 +
1

kmin

||wmk+1

p,s,2 ||20), (5.18)

where C(Ω) is a constant which depends on the domain Ω. The second term of RHS is

bound by

− 24t

mk+1−1∑
i=mk

aΓ(φi+1 − φi, umk+1
− umk

; εmk+1 , ei+1)

≤ 4t

4

mk+1−1∑
i=mk

(ν||ei+1||2Hf
+ kmin||εmk+1||2Hp

)

+
C4t

ν

mk+1−1∑
i=mk

||φi+1 − φi||2Hp
+

C4t

kmin

||umk+1
− umk

||2Hf
. (5.19)
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The third term of RHS is bound by

− 24t

mk+1−1∑
i=mk

aΓ(φi − φmk , umk
− ui; εmk+1 , ei+1)

= −24t

mk+1−1∑
i=mk

{aΓ(φi − φmk
, umk

− ui; ε
mk+1 , ei+1) + aΓ(εmk , ei; εmk+1 , ei+1)}

= 24t

mk+1−1∑
i=mk

{aΓ(εmk+1 − εmk , ei+1 − ei; εmk+1 , ei+1)− aΓ(φi − φmk
, umk

− ui; ε
mk+1 , ei+1)}

≤ 4t

2

mk+1−1∑
i=mk

(ν||ei+1||2Hf
+ kmin||εmk+1||2Hp

) + C̃4th−1(

mk+1−1∑
i=mk

||ei+1 − ei||20 + ||εmk+1 − εmk ||20)

+ C4t

mk+1−1∑
i=mk

(
1

ν
||umk

− ui||2Hf
+

1

kmin

||φi − φmk
||2Hp

). (5.20)

where C̃ = max{ 1
ν
, 1

kmin
} and also depends on the domain Ω, by choosing 4t, h, such that .

C̃4th−1 ≤ 1, combine the above inequalities, sum over k = 0, 1, · · · , l, we arrive at

||eml+1||20 − ||em0||20 + ν4t
l∑

k=0

mk+1−1∑
i=mk

||ei+1||2Hf

+ ||εml+1 ||20 − ||εm0 ||20 + kmin4t
l∑

k=0

mk+1−1∑
i=mk

||εmk+1||2Hp

≤ C̃4t
l∑

k=0

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+1

p,s,2 ||20)

+ C̃4t
l∑

k=0

||umk+1
− umk

||2Hf

+ C̃4t

l∑

k=0

mk+1−1∑
i=mk

(||umk
− ui||2Hf

+ ||φi − φmk
||2Hp

+ ||φi+1 − φi||2Hp
). (5.21)

By (5.4)-(5.11) and the approximate properties of Ph, the first term of RHS in (5.21)
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bound by

C̃4t

l∑

k=0

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+1

p,s,2 ||20)

≤ C̃4t

l∑

k=0

mk+1−1∑
i=mk

(
1

4t

∫ ti+1

ti
||(Ph − I)ut(t)||20dt +4t

∫ ti+1

ti
||utt||20dt)

+ C̃n4t

l∑

k=0

(
1

4s

∫ tmk+1

tmk

||(Ph − I)φs(s)||20ds +4s

∫ tmk+1

tmk

||φss||20ds)

≤ C̃(

∫ T

0

||(Ph − I)ut(t)||20dt +4t2
∫ T

0

||utt||20dt

+

∫ T

0

||(Ph − I)φs(s)||20ds +4s2

∫ T

0

||φss||20ds)

≤ C(T )(4t2 + h4), (5.22)

here and afterwards C(T ) denotes a constant depending on ν, kmin, T and the domain Ω.

The second term of RHS in (5.21) bound by

C̃4t
l∑

k=0

||umk+1
− umk

||2Hf
≤ C̃4t4s

∫ T

0

||us(s)||2Hf
ds ≤ C(T )4t2.

The third term of RHS in (5.21) bound by

C̃4t
l∑

k=0

mk+1−1∑
i=mk

(||umk
− ui||2Hf

+ ||φi − φmk
||2Hp

+ ||φi+1 − φi||2Hp
)

≤ C̃n4t

l∑

k=0

mk+1−1∑
i=mk

(||ui+1 − ui||2Hf
+ ||φi − φi+1||2Hp

) + C̃4t

l∑

k=0

mk+1−1∑
i=mk

||φi+1 − φi||2Hp

≤ C̃n4t2(

∫ T

0

||ut(t)||2Hf
dt +

∫ T

0

||φt(t)||2Hp
dt) + C̃4t2

∫ T

0

||φt(t)||2Hp
dt

≤ C(T )4t2. (5.23)

Combine the above bounds, add the initial data and yields the final result,

||eml+1 ||20 + ν4t
l∑

k=0

mk+1−1∑
i=mk

||ei+1||2Hf
+ ||εml+1||20 + kmin4t

l∑

k=0

mk+1−1∑
i=mk

||εmk+1||2Hp

≤ C(T )(4t2 + h4). (5.24)

2
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For the error in time derivatives, we have the following error estimate.

Theorem 5.2. Under the assumptions of the previous theorem, including, C̃4th−1 ≤ 1,

where C̃ is defined as above, the following error estimate holds:

4t

l∑

k=0

mk+1−1∑
i=mk

||dte
i+1||20 + ν||eml+1 ||2Hf

+ λ(eml+1 , eml+1)

+4t

l∑

k=0

||dtε
mk+1 ||20 + kmin

mk+1−1∑
i=mk

||εmk+1||2Hp

≤ C(T )(4t + h4 +4t−1h4). (5.25)

Proof. Taking v = 24tdte
m+1 = 2(em+1 − em) in (5.12), using the divergence-free property,

sum over m = mk,mk + 1, · · · ,mk+1 − 1, we get

24t

mk+1−1∑
i=mk

||dte
i+1||20 + af (e

mk+1 , emk+1)− af (e
mk , emk) +4t2

mk+1−1∑
i=mk

af (dte
i+1, dte

i+1)

= −24t

mk+1−1∑
i=mk

(wi+1
f,t , dte

i+1)− 24t

∫

Γ

mk+1−1∑
i=mk

(φi+1 − φi)dte
i+1 · nf

− 24t

∫

Γ

mk+1−1∑
i=mk

(φi − φmk)dte
i+1 · nf . (5.26)

Taking ψ = 2n4tdtε
mk+1 = 2n(εmk+1 − εmk) = 2

∑mk+1−1
i=mk

(εmk+1 − εmk) in (5.13) yield

24t||dtε
mk+1||20 +

mk+1−1∑
i=mk

{
ap(ε

mk+1 , εmk+1)− ap(ε
mk , εmk) +4t2ap(dtε

mk+1 , dtε
mk+1)

}

= 24t

mk+1−1∑
i=mk

(wmk+1
p,s , dtε

mk+1) + 24t

∫

Γ

mk+1−1∑
i=mk

dtε
mk+1(umk+1

− umk
) · nf

+ 24t

∫

Γ

mk+1−1∑
i=mk

dtε
mk+1(umk

− ui) · nf . (5.27)
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Combining the above two equalities (5.26) and (5.27), we have

24t

mk+1−1∑
i=mk

||dte
i+1||20 + af (e

mk+1 , emk+1)− af (e
mk , emk) +4t2

mk+1−1∑
i=mk

af (dte
i+1, dte

i+1)

+ 24t||dtε
mk+1||20 +

mk+1−1∑
i=mk

{
ap(ε

mk+1 , εmk+1)− ap(ε
mk , εmk) +4t2ap(dtε

mk+1 , dtε
mk+1)

}

= −24t

mk+1−1∑
i=mk

(wi+1
f,t , dte

i+1)− 24t

mk+1−1∑
i=mk

(wmk+1
p,s , dtε

mk+1)

− 24t

mk+1−1∑
i=mk

aΓ(φi+1 − φi, umk+1
− umk

; dtε
mk+1 , dte

i+1)

− 24t

mk+1−1∑
i=mk

aΓ(φi − φmk , umk
− ui; dtε

mk+1 , dte
i+1). (5.28)

The first term of RHS in (5.28) is bound by Young and Hölder inequalities

− 24t

mk+1−1∑
i=mk

(wi+1
f,t , dte

i+1)− 24t

mk+1−1∑
i=mk

(wmk+1
p,s , dtε

mk+1)

≤ 4t

mk+1−1∑
i=mk

||dte
i+1||20 +4t||dtε

mk+1||20 + C4t

mk+1−1∑
i=mk

(||wi+1
f,t ||20 + ||wmk+1

p,s ||20)

≤ C4t

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+1

p,s,2 ||20)

+4t

mk+1−1∑
i=mk

||dte
i+1||20 +4t||dtε

mk+1||20. (5.29)

The second term of the RHS is bound by

−24t

mk+1−1∑
i=mk

aΓ(φi+1 − φi, umk+1
− umk

; dtε
mk+1 , dte

i+1)

≤ 24t2

3

mk+1−1∑
i=mk

(ν||dte
i+1||2Hf

+ kmin||εmk+1||2Hp
)

+ C̃

mk+1−1∑
i=mk

||φi+1 − φi||2Hp
+ C̃||umk+1

− umk
||2Hf

. (5.30)
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The third term of the RHS is bound by

− 24t

mk+1−1∑
i=mk

aΓ(φi − φmk , umk
− ui; dtε

mk+1 , dte
i+1)

= −24t

mk+1−1∑
i=mk

{aΓ(φi − φmk
, umk

− ui; dtε
mk+1 , dte

i+1) + aΓ(εmk , ei; dtε
mk+1 , dte

i+1)}

≤ 44t2

3

mk+1−1∑
i=mk

(ν||dte
i+1||2Hf

+ kmin||dtε
mk+1||2Hp

) + C̃

mk+1−1∑
i=mk

(||ei||2Hf
+ ||εmk ||2Hp

)

+ C̃

mk+1−1∑
i=mk

(||umk
− ui||2Hf

+ ||φi − φmk
||2Hp

)

≤ 44t2

3

mk+1−1∑
i=mk

(ν||dte
i+1||2Hf

+ kmin||dtε
mk+1||2Hp

) + C̃

mk+1−1∑
i=mk

(||ei||2Hf
+ ||εmk ||2Hp

)

+ C̃n

mk+1−1∑
i=mk

(||ui+1 − ui||2Hf
+ ||φi − φi+1||2Hp

). (5.31)

For simplicity, we define

λ(u, v) =
d−1∑
i=1

∫

Γ

α√
τi ·Kτi

(u · τi)(v · τi).

Then, by using (5.28)-(5.31), we have

4t

mk+1−1∑
i=mk

||dte
i+1||20 + ν||emk+1 ||2Hf

− ν||emk ||2Hf
+ λ(emk+1 , emk+1)− λ(emk , emk)

+4t2
mk+1−1∑
i=mk

λ(dte
i+1, dte

i+1) +4t||dtε
mk+1||20 + kmin

mk+1−1∑
i=mk

{
||εmk+1 ||2Hp

− ||εmk ||2Hp

}

≤ C4t

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+1

p,s,2 ||20) + C̃

mk+1−1∑
i=mk

||φi+1 − φi||2Hp

+ C̃||umk+1
− umk

||2Hf
+ C̃n

mk+1−1∑
i=mk

(||ui+1 − ui||2Hf
+ ||φi − φi+1||2Hp

)

+ C̃

mk+1−1∑
i=mk

(||ei||2Hf
+ ||εmk ||2Hp

). (5.32)
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Sum over k = 0, 1, · · · , l, since λ(u, u) ≥ 0, we arrive at

4t

l∑

k=0

mk+1−1∑
i=mk

||dte
i+1||20 + ν||eml+1 ||2Hf

+ λ(eml+1 , eml+1)

+4t

l∑

k=0

||dtε
mk+1||20 + kmin

mk+1−1∑
i=mk

||εml+1 ||2Hp

≤ C4t
l∑

k=0

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+11
p,s,2 ||20)

+ C̃

l∑

k=0

mk+1−1∑
i=mk

||φi+1 − φi||2Hp
+ C̃

l∑

k=0

||umk+1
− umk

||2Hf

+ C̃n
l∑

k=0

mk+1−1∑
i=mk

(||ui+1 − ui||2Hf
+ ||φi − φi+1||2Hp

) + C̃

l∑

k=0

mk+1−1∑
i=mk

(||ei||2Hf
+ ||εmk ||2Hp

)

+ ν||em0||2Hf
+ λ(em0 , em0) + kmin

mk+1−1∑
i=mk

||εm0 ||2Hp
. (5.33)

Do similarly as (5.22)- (5.23), we have

C4t
l∑

k=0

mk+1−1∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20 + ||wmk+1

p,s,1 ||20 + ||wmk+1

p,s,2 ||20) ≤ C(T )(4t2 + h4),

C̃
l∑

k=0

||umk+1
− umk

||2Hf
≤ C(T )4t,

C̃
l∑

k=0

mk+1−1∑
i=mk

||φi+1 − φi||2Hp
+ C̃n

l∑

k=0

mk+1−1∑
i=mk

(||ui+1 − ui||2Hf
+ ||φi − φi+1||2Hp

) ≤ C(T )4t.

From Theorem 5.1, we have,

C̃
l∑

k=0

mk+1−1∑
i=mk

(||ei||2Hf
+ ||εmk ||2Hp

) ≤ C(T )(4t +4t−1h4).

Combine the above bounds, add the initial data and yields the final result,

4t
l∑

k=0

mk+1−1∑
i=mk

||dte
i+1||20 + ν||eml+1||2Hf

+ λ(eml+1 , eml+1)

+4t

l∑

k=0

||dtε
mk+1||20 + kmin

mk+1−1∑
i=mk

||εml+1||2Hp

≤ C(T )(4t + h4 +4t−1h4).
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2
At the smaller time steps used for the faster problem we have the following error estimate.

Theorem 5.3. Under the assumptions of the previous theorem, including, C̃4th−1 ≤ 1,

where C̃ is defined as above, the following error estimate holds: for J = 1, 2, · · · , n− 1, and

k = 0, 1, · · · , l,

||emk+J+1||20 + ν4t

mk+J∑
i=mk

||ei+1||2Hf
≤ C(T )(4t2 + h4). (5.34)

Proof. Taking v = 24tem+1 in (5.12), using the divergence-free property, sum over m =

mk,mk + 1, · · · ,mk + J, yield

||emk+J+1||20 +

mk+J∑
i=mk

||ei+1 − ei||20 − ||emk ||20 + 24t

mk+J∑
i=mk

af (e
i+1, ei+1)

= −24t

mk+J∑
i=mk

(wi+1
f,t , ei+1)− 24t

∫

Γ

mk+J∑
i=mk

(φi+1 − φi)e
i+1 · nf

− 24t

∫

Γ

mk+1−1∑
i=mk

(φi − φmk)ei+1 · nf

≤ 4t

3

mk+J∑
i=mk

ν||ei+1||2Hf
+ C̃4t

mk+J∑
i=mk

||wi+1
f,t ||20 +

4t

3

mk+J∑
i=mk

ν||ei+1||2Hf

+ C̃4t

mk+J∑
i=mk

||φi+1 − φi||2Hp
+
4t

3

mk+J∑
i=mk

ν||ei+1||2Hf
+ C̃4t

mk+J∑
i=mk

||φi − φmk ||2Hp

≤ 4t

mk+J∑
i=mk

ν||ei+1||2Hf
+ C̃4t

mk+J∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20)

+ C̃4t

mk+J∑
i=mk

||φi+1 − φi||2Hp
+ C̃4t

mk+J∑
i=mk

(||φi − φmk
||2Hp

+ ||φmk
− φmk ||2Hp

) (5.35)
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By (5.4), (5.5), (5.9), (5.11), and Theorem 5.1, we have

C4t

mk+J∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20) ≤ C(T )(4t2 + h4),

C̃4t

mk+J∑
i=mk

||φi+1 − φi||2Hp
≤ C(T )4t2,

C̃4t

mk+J∑
i=mk

||φi − φmk
||2Hp

≤ C̃n4t

mk+J∑
i=mk

||φi − φi+1||2Hp
≤ C(T )4t2,

C̃4t

mk+J∑
i=mk

||φmk
− φmk ||2Hp

≤ C̃n4t||φmk
− φmk ||2Hp

≤ C(T )(4t2 + h4).

Note that the last two inequalities above, we used the fact mk + J − mk ≤ n for J =

1, 2, · · · , n − 1 and the general triangle inequality. Combine the above bounds, the final

result follows by Theorem 5.1,

||emk+J+1||20 +

mk+J∑
i=mk

ν||ei+1 − ei||20 +4t

mk+J∑
i=mk

||ei+1||2Hf

≤ C(T )(4t2 + h4) + ||emk ||20 ≤ C(T )(4t2 + h4).

2
For the error in time derivatives on smaller time steps, we have the following error

estimate.

Theorem 5.4. Based on the smoothness assumption on the true solution, J = 1, 2, · · · , n−1,

and k can be 0, 1, · · · , l, the following estimate holds:

4t

mk+J∑
i=mk

||dte
i+1||20 + ν||emk+J+1||2Hf

+ λ(emk+J+1, emk+J+1)

≤ C(T )(4t + h4 +4t−1h4). (5.36)

Proof. Taking 24tdte
m+1 = 2(em+1 − em) in (5.12), using the divergence-free property, sum
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over m = mk,mk + 1, · · · ,mk + J, we obtain

24t

mk+J∑
i=mk

||dte
i+1||20 + af (e

mk+J+1, emk+J+1)− af (e
mk , emk) +4t2

mk+J∑
i=mk

af (dte
i+1, dte

i+1)

= −24t

mk+J∑
i=mk

(wi+1
f,t , dte

i+1)− 24t

∫

Γ

mk+J∑
i=mk

(φi+1 − φi)dte
i+1 · nf

− 24t

∫

Γ

mk+1−1∑
i=mk

(φi − φmk)dte
i+1 · nf

≤ 4t

mk+J∑
i=mk

||dte
i+1||20 + C4t

mk+J∑
i=mk

||wi+1
f,t ||20 +

4t2

2

mk+J∑
i=mk

ν||dte
i+1||2Hf

+ C̃

mk+J∑
i=mk

||φi+1 − φi||2Hp
+
4t2

2

mk+J∑
i=mk

ν||dte
i+1||2Hf

+ C̃

mk+J∑
i=mk

||φi − φmk ||2Hp

≤ 4t

mk+J∑
i=mk

||dte
i+1||20 +4t2

mk+J∑
i=mk

ν||dte
i+1||2Hf

+ C4t

mk+J∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20)

+ C̃

mk+J∑
i=mk

||φi+1 − φi||2Hp
+ C̃

mk+J∑
i=mk

(||φi − φmk
||2Hp

+ ||φmk
− φmk ||2Hp

). (5.37)

Just as the proof of the last theorem, using (5.4), (5.5), (5.9), (5.11) and Theorem 5.1, as

well as the general triangle inequality and the fact mk + J −mk ≤ n for J = 1, 2, · · · , n− 1,

we obtain

C4t

mk+J∑
i=mk

(||wi+1
f,t,1||20 + ||wi+1

f,t,2||20) ≤ C(T )(4t2 + h4),

C̃

mk+J∑
i=mk

||φi+1 − φi||2Hp
≤ C(T )4t,

C̃

mk+J∑
i=mk

||φi − φmk
||2Hp

≤ C̃n4t

mk+J∑
i=mk

||φi − φi+1||2Hp
≤ C(T )4t,

C̃

mk+J∑
i=mk

||φmk
− φmk ||2Hp

≤ C̃n||φmk
− φmk ||2Hp

≤ C(T )(4t +4t−1h4).
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Combine the above bounds, by Theorem 5, yield the final result,

4t

mk+J∑
i=mk

||dte
i+1||20 + ν||emk+J+1||2Hf

+ λ(emk+J+1, emk+J+1)

≤ C(T )(4t + h4 +4t−1h4) + ν||emk ||2Hf
+ λ(emk , emk)

≤ C(T )(4t + h4 +4t−1h4).

2
Corollary 5.5. Under the assumptions of the previous theorem, including, C̃4th−1 ≤ 1,

where C̃ depends on ν, kmin and the domain Ω, such that when C̃4th−1 ≤ 1, for k =

0, 1, · · · ,M − 1, and m = 1, 2, · · · , N , the following estimates hold:

||um
h − u(tm)||0 ≤ C(T )(4t + h2), (5.38)

||φmk+1

h − φ(tmk+1)||0 ≤ C(T )(4t + h2), (5.39)

||um
h − u(tm)||1 ≤ C(T )(4t1/2 + h +4t−1/2h2), (5.40)

||φmk+1

h − φ(tmk+1)||1 ≤ C(T )(4t1/2 + h +4t−1/2h2). (5.41)

Proof. By using the triangle inequality, combine the approximation properties and Theorem

5.1-5.4, it is easy to obtain the claim of this theorem. 2
Remark: In this paper, different conditions are needed for stability and error estimation,

for stability, we need 4t satisfies that 4t < C with C is a constant depends on domain

Ω. For the error estimation, we assume that 4t satisfies that C̃4th−14t < 1 with C̃ is a

constant depends on ν, kmin as well as the domain Ω. Which condition is better is still an

open question, it depends on the problem and many other factors.

6 Numerical tests

In this section, we present some results of numerical tests which confirm the theoretical

analysis. Assume Ωf = [0, 1]× [1, 2] and Ωp = [0, 1]× [0, 1] with interface Γ = (0, 1)× {1}.
The exact solution is given by

(u1, u2) = ([x2(y − 1)2 + y]cos(ωt), [−2

3
x(y − 1)3]cos(ωt) + [2− πsin(πx)]cos(t)),

p = [2− πsin(πx)]sin(0.5πy)cos(t),

φ = [2− πsin(πx)][1− y − cos(πy)]cos(t).

Here ω = 5, and the initial conditions, boundary conditions, and the forcing terms follows

the solution.

The finite element spaces are constructed by using the well-known MINI elements (P1b−
P1) for the Stokes problem and the linear Lagrangian elements (P1) for the Darcy flow. The
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code was implemented using the software package FreeFEM++[11]. For the monolithically

coupled scheme, the GMRES routine is used to solve the (non-symmetric) coupled system.

For the uncoupled scheme, a multi-frontal Gauss LU factorization implemented to solve the

SPD sub-systems.

We define some notations first, for coupled scheme, we denote

eh,m
u = uh,m − u(tm), eh,m

p = ph,m − p(tm), eh,m
φ = φh,m − φ(tm).

For the decoupled scheme, we denote

em
h,u = um

h − u(tm), em
h,p = pm

h − p(tm), em
h,φ = φm

h − φ(tm).

First, we compare the convergence performance and CPU time for both the coupled

scheme and the decouple scheme. In Table 1-2, we consider both schemes at time tm = 1.0,

with varying mesh h but fixed time step 4t and 4s = ω4t. The two schemes achieve

similar precision, although the monolithically coupled scheme is slightly more accurate than

the decoupled scheme. However, the coupled scheme required much more CPU time than the

decoupled scheme. The relative advantage of the decoupled scheme increased as the mesh

was decreased. In Table 3-4, at the same time tm = 1.0, with varying time step 4t and

4s = ω4t but fixed mesh h = 1
8

are tested for both schemes. The two schemes almost get

the same accuracy, but the coupled scheme needs much more CPU time than the decoupled

scheme. In all, the decoupled scheme is comparable with the coupled scheme, and cheaper

and more efficient.

Next, we will focus on the decoupled scheme, and examine the orders of convergence with

respect to the spacing h or the time step 4t. Following [16], we introduce a more accurate

approach to examine the orders of convergence with respect to the time step 4t or the mesh

size h due to the approximation errors O(4tγ) + O(hµ). For example, assuming

v4t
h (x, tm) ≈ v(x, tm) + C1(x, tm)4tγ + C2(x, tm)hµ.

Thus,

ρv,h,i =
||v4t

h (x, tm)− v4t
h
2

(x, tm)||i
||v4t

h
2

(x, tm)− v4t
h
4

(x, tm)||i
≈ 4µ − 2µ

2µ − 1
.

ρv,4t,i =
||v4t

h (x, tm)− v
4t
2

h (x, tm)||i
||v

4t
2

h (x, tm)− v
4t
4

h (x, tm)||i
≈ 4γ − 2γ

2γ − 1
.

Here, v can be u, p, φ and i can be 0, 1. While ρv,h,i, ρv,4t,i approach 4.0 or 2.0, the

convergence order will be 2.0 or 1.0, respectively.

In Table 5, we study the convergence order with a fixed time step 4t = 0.01 and

4s = ω4t and varying spacing h = 1/2, 1/4, 1/8, 1/16, 1/32. Observe that, ρu,h,0, ρφ,h,0
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is a little larger than 4.0, and ρu,h,1, ρp,h,0, ρφ,h,1 approach 2.0, which suggest that the

error estimates O(h2) for the L2-norm of u and φ, O(h) for the H1-norm of u and φ

and the L2-norm of p is optimal in space for the decoupled scheme. However, in Table

5, we study the convergence order with a fixed spacing h = 1/8 and varying time step

4t = 0.02, 0.01, 0.005, 0.0025, 0.00125 and 4s = ω4t. The numerical experiments

strongly suggest that the orders of convergence in time for all should be O(4t), which im-

plies that the error estimates for the L2-norm of u and φ is optimal, however, the error

estimates for the H1-norm of u and φ might not be optimal for the decoupled scheme, and

may be further improved from O(4t1/2) to O(4t) by a finer analysis- an open problem for

further work.

Table 1: The convergence performance and CPU time of coupled scheme at time tm = 1.0,

with varying mesh h but fixed time step 4t = 0.01.

h ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

1
2

0.260588 1.50020 0.84932 0.154474 1.37573 4.428
1
4

0.073905 1.03481 0.82981 0.058474 0.86908 8.741
1
8

0.017644 0.40179 0.20873 0.010962 0.38724 32.081
1
16

0.004265 0.19129 0.07193 0.002688 0.19679 149.358
1
32

0.001120 0.09931 0.03493 0.000756 0.10059 698.809

Table 2: The convergence performance and CPU time of decoupled scheme at time tm = 1.0,

with varying mesh h but fixed small time step4t = 0.01 and fixed large time step4s = ω4t.

h ||em
h,u||0 ||em

h,u||1 ||em
h,p||0 ||em

h,φ||0 ||em
h,φ||0 CPU

1
2

0.260588 1.50020 0.85337 0.154915 1.37554 0.856
1
4

0.070324 0.80750 0.47382 0.047873 0.79309 3.020
1
8

0.017953 0.41543 0.224210 0.013647 0.40958 10.038
1
16

0.004287 0.18950 0.07584 0.003879 0.19556 38.423
1
32

0.001185 0.09608 0.03781 0.002168 0.10105 143.963

7 Conclusions

A decoupled method with different time step in each domain for mixed Stokes-Darcy

problem is proposed and analyzed in this paper. Under a modest time step restriction we
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Table 3: The convergence performance and CPU time of coupled scheme at time tm = 1.0,

with varying time step 4t but fixed mesh h = 1
8
.

4t ||eh,m
u ||0 ||eh,m

u ||1 ||eh,m
p ||0 ||eh,m

φ ||0 ||eh,m
φ ||0 CPU

0.02 0.017658 0.401804 0.209185 0.010998 0.387225 19.656

0.01 0.017644 0.401971 0.208733 0.010962 0.387235 31.839

0.005 0.017638 0.401786 0.208770 0.010944 0.387240 55.723

0.0025 0.017639 0.401786 0.208897 0.010935 0.387242 103.725

0.00125 0.017639 0.401786 0.208942 0.010930 0.387242 215.046

Table 4: The convergence performance and CPU of decoupled scheme at time tm = 1.0, with

varying small time step 4t and large time step 4s = ω4t and but fixed mesh h = 1
8

.

4t ||em
h,u||0 ||em

h,u)||1 ||em
h,p||0 ||em

h,φ||0 ||em
h,φ||0 CPU

0.02 0.017849 0.415564 0.226369 0.014735 0.409701 5.429

0.01 0.017953 0.415431 0.224210 0.013647 0.409579 10.639

0.005 0.018010 0.415403 0.223604 0.013128 0.409577 21.435

0.0025 0.018038 0.415398 0.223444 0.012877 0.409592 41.262

0.00125 0.018050 0.415397 0.223404 0.012753 0.409603 76.190

Table 5: Convergence orders of O(hµ) of Uncouple scheme at time tm = 1.0, with varying

mesh h but fixed small time step 4t = 0.01 and fixed large time step 4s = ω4t.

h ||um
h − um

h
2

||0 ρu,h,0 ||um
h − um

h
2

||1 ρu,h,1 ||pm
h − pm

h
2

||0 ρp,h,0

1
2

0.210264 3.74520 1.60993 1.94293 0.71638 1.48895
1
4

0.056142 3.83200 0.82861 1.93881 0.48113 2.15270
1
8

0.014651 4.23579 0.42738 2.14606 0.22350 2.89976
1
16

0.003458 0.19915 0.07708

h ||φm
h − φm

h
2

||0 ρφ,h,0 ||φm
h − φm

h
2

||0 ρφ,h,1

1
2

0.134538 3.38510 1.30491 1.67120
1
4

0.039744 3.56065 0.78083 1.87755
1
8

0.011162 4.81406 0.41587 2.05836
1
16

0.002319 0.20204
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Table 6: Convergence orders of O(4tγ) of Uncouple at time tm = 1.0, with varying small

time step 4t and large time step 4s = ω4t and but fixed mesh h = 1
8

.

4t ||um
4t − um

4t
2

||0 ρu,4t,0 ||um
4t − um

4t
2

||1 ρu,4t,1 ||pm
4t − pm

4t
2

||0 ρp,4t,0

0.02 6.49961e-4 2.03698 6.52832e-3 2.05855 1.68035e-2 1.91948

0.01 3.19081e-4 2.15518 3.17132e-3 2.18070 8.75420e-3 1.99190

0.005 1.48053e-4 2.17448 1.45427e-3 2.21398 4.39490e-3 2.01493

0.0025 6.80866e-5 6.656858e-4 2.18117e-3

4s ||φm
4s − φm

4s
2

||0 ρφ,4s,0 ||φm
4s − φm

4s
2

||0 ρφ,4s,1

0.1 1.51669e-3 1.96730 7.98752e-3 1.96671

0.05 7.70949e-4 1.98387 4.06136e-3 1.98326

0.025 3.88608e-4 1.99199 2.04781e-4 1.99160

0.0125 1.95085e-4 1.02822e-4

prove the zero-stability over bounded time intervals of the method. An analysis of the

asymptotic stability over infinite time intervals and the possibly uniformity of the error

in time is an important open problem. An error estimation is presented and numerical

experiments are conducted to demonstrate the computational effectiveness of the decoupling

approach.

No one paper can analyze every algorithmic option. We have made several choices to

simplify the method (to offset the notational complexity of asynchronous time stepping

methods). In particular we have studied a formulation of the porous media problem as one

second order problem for the Darcy pressure instead of as a mixed system for the pressure

and Darcy velocity. Extension to a mixed discretization in the porous media region is also

an important open problem. At this early stage of development, it does seem like uncoupled,

partitioned methods are very promising for solving coupled surface water-ground water flow

problems. They are very efficient, can be accurate and do not require reference to any

monolithically coupled system of even iteration between sub-problems.
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