Linear Algebra Preliminary Exam

May 52023

1. Let V be an n-dimensional real vector space and \mathfrak{B} be a basis for V. Let S be a collection of subspaces of V such that any subspace in S is spanned by a subset of the basis \mathfrak{B}. Show that for any subspaces $U, W_{1}, W_{2} \in S$, we have

$$
U \cap\left(W_{1}+W_{2}\right)=U \cap W_{1}+U \cap W_{2}
$$

2. Let v_{1}, v_{2}, v_{3} be nonzero eigenvectors of an operator A such that $v_{1}+v_{2}=$ v_{3}. Show that they all have the same eigenvalue.
3. Let A, B be two anti-self-adjoint matrices. Show that $A^{2}+B^{2}$ is invertible if and only if $N_{A} \cap N_{B}=\{0\}$.
4. Let A be an $n \times n$ complex matrix which commutes with all positive definite matrices. Show that $A=k I$ for some scalar k.
5. Let V be a complex Euclidean space and $P: V \rightarrow V$ be a linear map satisfying $P^{2}=P$. Suppose additionally that

$$
\|P x\| \leq\|x\|
$$

holds for every $x \in V$. Show that P is an orthogonal projection.
6. Let A, B be two real symmetric matrices, show that

$$
\operatorname{tr}(A B)^{2} \leq \operatorname{tr} A^{2} \operatorname{tr} B^{2}
$$

