ANALYSIS OF A SECOND ORDER, UNCONDITIONALLY
STABLE, PARTITIONED METHOD
FOR THE EVOLUTIONARY STOKES-DARCY PROBLEM

MICHAELA KUBACKI AND MARINA MORAITI

Abstract. In this work we study a new stabilization for abstract evolution equations applied to
the numerical solution of the coupled, fully evolutionary Stokes-Darcy equations that model the
interaction between groundwater and surface water flows. The method consists of uncoupling the
fluid flow from the porous media subdomains by the Crank-Nicolson Leap-Frog (CNLF) method,
studied by Kubacki in [13], with added stabilization terms that eliminate the CFL time step
restriction of CNLF. We prove that the CNLF-stab method is unconditionally stable and second
order convergent. We verify stability numerically. Numerical tests for convergence confirm second

order convergence for the Stokes velocity and Darcy pressure variables as predicted.
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1. Introduction

One of the difficulties in solving the Stokes-Darcy problem arises from the cou-
pling of two different physical processes in two adjacent domains. Using partitioned
methods to uncouple the Stokes-Darcy equations resolves this issue and allows one
to leverage existing solvers already optimized to solve the physical processes in each
subdomain. Mu and Zhu first studied two, first order accurate partitioned methods
for the evolutionary Stokes-Darcy equations in [16]. Layton, Trenchea, and Tran
analyzed other first order partitioned methods in [14]. In [13], it was shown that
the classical Crank-Nicolson Leap-Frog (CNLF) method results in a second order
partitioned method for the Stokes-Darcy system. However, the conditional stabil-
ity of CNLF makes the method impractical when faced with certain small problem
parameters. In addition, even when the CFL type time step condition for stability
holds, regular CNLF becomes unstable due to the unstable computational mode of
Leap-Frog in some cases (see [13]).
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FiGure 1. Fluid and porous media domains

By adding stabilization terms to both the Stokes as well as the groundwater
flow equation, the proposed numerical scheme, denoted CNLF-stab and introduced
in Section 3, equations (20)-(22), is unconditionally stable and second order con-
vergent. More specifically, we give a proof that the stabilization eliminates the
CFL type time step restriction without affecting the second order convergence of
the Stokes velocity and Darcy pressure variables. In further contrast to classical
CNLF, numerical tests in Section 5 demonstrate that CNLF-stab controls the un-
stable mode due to Leap-Frog in the cases in which regular CNLF stability fails.
Analytic understanding of this attribute is an open question.

The system of equations modeling the interaction between surface water and
groundwater flows follows. Let Qf, €, denote two regular domains, the fluid and
porous media regions respectively, and assume they lie across an interface, I, from
each other (Figure 1). Assume that an incompressible fluid flows both ways across
the interface into the two domains. We assume time-dependent Stokes flow in Qy
and the time-dependent groundwater flow equation along with Darcy’s law in €2,.

The fluid velocity field u = u(x,t) and pressure p = p(z,t), defined on Qy, and
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porous media hydraulic head ¢ = ¢(z,t), defined on €, satisfy

uy — vAu+ Vp = fr(x,t),V-u=0, in Qy,
Sopr =V - (KV@) = fp(x,1), in €,
u(z,0) = up, in Qp, ¢(z,0) = ¢o, in Qp, (1)
u(z,t) =0, in 0Qp\I, ¢(z,t) =0, in OQH\I,

+ coupling conditions across I,

where we normalized the pressure p, as well as the body forces in the fluid re-
gion fr by the fluid density. Denoted by f, are the sinks and sources in the
porous media region, v > 0 is the kinematic viscosity of the fluid, and K is the
hydraulic conductivity tensor, assumed to be symmetric, positive definite with
spectrum(K) € [kmin, kmaz]. We assume Dirichlet boundary conditions on the
exterior boundaries of the two domains (not including the interface I). We discuss
the coupling conditions in more detail in Section 2.

In the aforementioned equations, the parameter Sy represents the specific stor-
age, meaning the volume of water that a portion of a fully saturated porous medium
releases from storage per unit volume and per unit drop in hydraulic head, see Freeze
and Cherry [7], and Hantush [9]. Table 1 gives values of Sy for different materials
from Domenico and Mifflin [6] and Johnson [11]. In (2) we have the time step
condition for stability in regular CNLF derived in [13], where g represents the grav-
itational acceleration constant and h the mesh size in the finite element discretiza-
tion. The condition involves Sy, making the time step condition computationally
restrictive. In the case of a confined aquifer, for instance, with Sy = O(1079), if we
take h = 0(0.1) then, because g = O(10') the time step can at most be of order
1075, A small time step is prohibitive since studying flow in large aquifers with low

conductivity necessitates accurate calculations over long time periods.

At < C max{min{h?, gSo}, min{h, gSoh}} (2)
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TABLE 1. Specific Storage (Sp) values for different materials

Material Specific Storage Sy (m~1)
Plastic clay 2.0x 1072 -2.6 x 1073
Stiff clay 2.6 x1073 —-1.3 x 1073
Medium hard clay 1.3x1073-9.2x107*
Loose sand 1.0 x 1073 — 4.9 x 10~*
Dense sand 20x107%—-1.3x107*
Dense sandy gravel 1.0x 1074 -4.9x107°
Rock, fissured jointed 6.9x107°—-3.3x 1076
Rock, sound less than 3.3 x 1076

Another important parameter in our analysis is the hydraulic conductivity tensor
in the porous medium, K. In exact arithmetic, stability of CNLF does not depend
upon K. However, in the presence of round-off error, CNLF becomes unstable
for small values of the minimum eigenvalue of K, kpin. If At = O(1072) and
Emin = O(1071) or smaller, classical CNLF method becomes unstable due to the
unstable computational mode (see Kubacki [13] Section IV.B Figure 3). Since the
hydraulic conductivity is often orders of magnitude smaller than 10~ (see Table 2

for values of k,;, from Bear [1]), this can be a frequent problem of using CNLF.

TABLE 2. Hydraulic conductivity (kmn) values for different materials

Material Hydraulic conductivity ki, (m/s)
Well sorted gravel 10-T —10°

Highly fractured rocks 10~2 — 10°

WEell sorted sand or sand & gravel 1074 —-102

Oil reservoir rocks 1076 —10-4

Very fine sand, silt, loess, loam 1078 —10°

Layered clay 1078 — 107

Fresh sandstone, limestone, dolomite, granite 10712 — 1077
Fat/Unweathered clay 10712 —107?

In Section 2 we present necessary preliminaries along with the corresponding
weak formulation of the Stokes-Darcy problem. In Section 3 we introduce the
CNLF-stab method for the evolutionary Stokes-Darcy problem and present the
proof for unconditional stability. We prove second order convergence of the method
in Section 4. Section 5 demonstrates the method’s unconditional stability and
second order convergence through a series of numerical tests. Finally, we present

conclusions in Section 6.
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2. Preliminaries

Before discussing the CNLF-stab method, we present the equivalent variational
formulation along with some inequalities relevant to our analysis. To complete the
system of equations in (1), we must add coupling conditions to describe the flow
along the interface, I. The coupling conditions consist of conservation of mass

across the interface

u-ng —KVe-n, =0, onl, (3)
and balance of normal forces across the interface

p—viy-Vu-ny=gp, onl, (4)

where 7, = —ny are the outward pointing unit normal vectors on Q¢,, (Figure
1). The last condition is a condition on the tangential velocity on I. Let 7;,
i =1,...,d — 1, denote an orthonormal basis of tangent vectors on I, d = 2 or
3. We assume the Beavers-Joseph-Saffman condition, see Joseph [12] and Saffman
[18]:

vt -Vu- iy = —u-7;, fori=1,...,d—1, on I, (5)

o'
which is a simplification of the original and more physically realistic Beavers-Joseph
condition, see Beavers and Joseph [2]. The parameter « in (5) is an experimentally
determined constant. For more information on this condition see e.g., Mikelic and
Jager [10], and Payne and Straughan [17].

The equivalent variational formulation of equations (1)-(5) follows, see e.g., Dis-
cacciati, Miglio and Quarteroni [5]. Let the L? norm on Q, be denoted by ||- ||/,
and the L? norm on the interface, I, by || - ||;; denote the corresponding inner prod-

ucts on Qy, by (-,-)¢/p. Furthermore, denote the H' norm on Qy, by || - ||1,¢/p-
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Define the spaces

Xp={ve (H" ()" :v=00n0Q\I},
X, :={¢p e H(Q) :¢p=0o0n O\ },
Q= L*(Q),

Vi={veX;:(V-v,q)f =0forall ¢ € Q}.

The norms on the dual spaces X7 and X are given by

(f7 U)f/p
1l - = sup ===
fr 0£vEXy/p NI

In the analysis to follow we use the following inequalities. The first is the Poincaré-
Friedrichs inequality. The second is a trace inequality, see, for example, Brenner
and Scott [3], chapter 1.6, p. 36-38. The first and second inequalities hold for any
function w that belongs to either X or X, and the third inequality holds for any
function v € Xy.

lwlly/p < Cp;,, IVwlly/p, for some constants Cp,,, >0, (6)

1 1
||7«UHL2(an/,,) < C'Qf/p||w||;/p||Vw||]%/p7 for some constants Cq,, > 0, (7)

IV - ull; < Vd||Vul|s, where d =2, or 3. (8)
Define the bilinear forms
d—1 o
,v) = (vVu, Vo) + —(u-7;)(v-7;) ds,
ag(u,0) = (W, Vo) ;/\/Tw F)(w-4) ds

ap(¢51/}) = (qub,VQp)p,
= -~y ds.
crfu.0) =g [ ou-iny ds

The interface coupling term, ¢ (-, -), plays a key role in our analysis. The following

inequalities hold for our bilinear forms.
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Lemma 1. The bilinear forms az(-,-),ap(-,-) and cr(u, @) satisfy
~1/2
ag(u,v) < max {v+1,(1/2)C(Qp) okt Huls o]z, (9)

d—1
ay(u,) 2 vVally + k2 Y [ (e h)? do = vl Vulf + a2 7R,
i=171

(10)
ap(, %) < Emaa [Vl VYlp, (11)
ap(6, 9) = kminl VO[3, (12)
ler(u, @) < (1/2)gC (g, Qp)[[ull, £l 10 (13)

for all u,v € Xy and all ¢, € X,.

Proof. The proofs are straightforward. For the first four inequalities, see for exam-
ple Kubacki [13] Section IT Lemma 2.3. For the coupling inequality, see for example
Moraiti [15] Section 2 Lemma 2.2. O

An additional inequality on the interface term is given below and holds under
conditions on the domains {2f,€2,. The constant Cy, depends on €/, and in the
special case of a flat interface I, with ; and €, being arbitrary domains, C ,

equals 1, see Moraiti in [15] Section 3 Lemmas 3.1 and 3.2.

lcr(u, d)| < gCpllullprv,rll@llp- (14)

The variational formulation of the Stokes-Darcy problem (1), (3)-(5) reads: given

u(z,0) = uo(z), ¢(x,0) = ¢o(x), find w: [0,00) = V}, ¢ : [0,00) — X, satisfying

(u, 0) 5 +agp(u,v) +er(v,0) = (f5,0)5, (15)

9S0(¢4, w)p + ga’p((ba w> - C](’Lh V) = g(fp7 w):m (16)

for all v € Vy, and ¢ € X,,. The existence and uniqueness of a solution (u, ¢) to
the problem (15)-(16) follows by the Hille - Yosida theorem, see Brézis [4].
We discretize in space using the Finite Element Method (FEM). Select a quasiu-

niform triangular mesh, 7, for the combined subdomains, 2 US2,, where h denotes
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the maximum triangle diameter. Next, choose FEM spaces based on a conforming

FEM triangulation:

Fluid velocity: X} C Xy,
Darcy Pressure: XII} C X,

Stokes Pressure: Q? C Q.

Additionally, we must select X J’} and Q? so that they satisfy the discrete inf-sup
condition (LBB") (see, for example [8]) for stability of the discrete pressure. Notice
that th ={v, € X? 2 (qn, Vo) f =0V, € Q?} is not necessarily a subset of V5.
Hence, we must include the incompressibility condition (18) in the semidiscretized
formulation. Given up(x,0) = ug(x), ¢n(z,0) = ¢o(x), find (up, pn, én) : [0,00) —
(X]’}, Q}}, XI’}) such that

(Un,t,vn)f + ap(un,vn) — (Pr, V- vn) s + cr(vn, on) = (fr,vn) s (17)

(qn, V -up)y =0, (18)

9S0(Dnt,Un)p + gap(dn, n) — cr(un, ¥n) = g(fp, Yni)p, (19)

for all (vha qh» wh) € (X}L7 Q?v XZ}JL)
3. CNLF-stab method and Unconditional Stability
The CNLF-stab method for the numerical solution of the evolutionary Stokes-

Darcy problem given in (1), (3)-(5) is introduced next.

Algorithm 2. (CNLF-stab Method) Let t" := nAt and v" = v(z,t"™) for any
function v(x,t). CNLF with added stabilization for the evolutionary Stokes-Darcy

equations is as follows.
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Given (uf, o, 0F) (™40 61 € (X5, Q4 XD), find
(uh ™ o) € (X0, Q) Xp) satisfying for all (vn, an, ¥n) € (XF, Q4 X2 ) :
wF Tl k-1 Wt g k-1 uk+1+uk—1
( h 2Ath ’vh)f + (v ( h 2Ath ) 7v'vh)f +af ( h 5 h ,'Uh)
k+1 k—1
- (%,V : 'Uh)f +cr(vn, o) = (f]]vc,vh)f
(20)
uk+1+uk—1
(0, V- (5 )>f:0’ (21)
nt+l_ k—1 k+1_ k—1
gSO (%7¢h)p + ap (%; ¢h) - Cf(ulfu wh)
+AtGCE, (V3 = o), Vi), + Atg>Ch, (0 — di ), = 9 (S5 ¥
(22)

where Cyp, is the constant from inequality (14).

CNLF-stab is a 3 level method. The zeroth terms, (ul),p?,#"), come from the
initial conditions of the problem. We must obtain the first terms, (uj,p}, ¢ ), by a
one step method which uncouples the system, for example Backward Euler Leap-
Frog (BELF). The errors in this first step will affect the overall convergence rate of

the method. Notice that the added stability terms,

(V’ (%) , V- vh)f, in (20) and
Atg*C3, (V5T = o), Vin) , Atg®CF, (61 — 6571 ), in (22),

are O(At?). Similar to CNLF, the CNLF-stab method uncouples the Stokes-Darcy
equations into two subdomain problems by treating the coupling term explicitly
with Leap-Frog. By adding the above stabilization terms to CNLF, we eliminate the
need for a CFL type time step restriction for stability. The proof for unconditional

stability of the CNLF-stab method (20)-(22) follows.
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Theorem 3. (Unconditional Stability of CNLF-stab) CNLF-stab is unconditionally

stable: for any N > 0, there holds

(e v, + Il = D rvg) + 950 (len l17 + e~ 17)

N |

Z{VIIV up ™ u ) 1 A+ kanlIV (637 0 15}

< ||Ui||§)lv,f + Hu?LHQDIV,f + 950 (||¢111||;2; + ||¢h||;27) (23)
+ 2At292012”,p (”(bflLH%,p + ||¢?L||%,p) + 2At {CI((b?m ull'b> - CI((b}lw u%)}
N-1
At g 1
+ 5 AT+ SIS
k=1
Proof. In (20), (22) set v), = u’fLH + uﬁfl, Yy = k“ + (;S . Then the pressure

term in (20) cancels by (21). Adding the two equations together and multiplying
through by 2At yields

i W rv = lluy " I Brvy + 950 (6 15 = llon " 113)

+2086%CF, (I 711, — IR 117 )

4t oy (65714 040+ 0) g (a4 b )

+ 2A¢ (er(up™ +uf o) — er(up, ¢f T+ op )

:2At{g( Bl g ghe )p (F5,uk+! +u£*1)f}.

If we let

Ck+1/2 - Cl(qﬁéﬁu U2+1) - CI( £+13 u’fb)?

then the interface terms in the equation above become

er(up™ +uf ) —er(uf, @+ 0fTY) = O - OF R
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Using coercivity of the bilinear forms ay,,(:,-), the dual norms on X, Xy and

Young’s inequality we obtain, after rearranging,

ek v = sk brveg + 950 (195715 = 19571115)

+20026°C3, (6517, — I9h 1 13,) +2a¢ {Ch+h — o+-4}
(24)
+ At {Bain

v ( ’““Wi‘l) II?) IV (™ ) 113

< At*”fsz 1.f JFAt

k2
Hf =1,

Denote the energy terms by

B2 = b3 By + 90 (165712 + 16612)

ip)-

+2A1%62C3 (1o

A
Then (24) becomes

Ek+1/2 Ek 1/2 +At{km”’ ||V( k+1 +¢)Z—1) ”2 2||V( k+1 u;cl—l) ||?C}

,erAt HffH21f

+2At {C’““/? - C’H/?} < A

Sum up the inequality from k=1 to N — 1 to find

N-—1
ENY2 4 AE ST [ |9 (68 gh ) 12 £V (b uf ) )12
p) (25)

12AtON-2 < B2 4 01/2 +At ||f’“||2 - +At ||ff||21 N

Applying inequality (14) to the interface terms involved in the term CN~1/2 gives

ler(un’, 6 "D < gCrpllun [prvisllén "1y and

ler(up 001 < 9Crplluy " Iprvisl6h 1.

Therefore, we may bound the term CV~1/2 by the Cauchy-Schwarz and Young

inequalities as follows.

2800V < 2 5 (i Ibrvs + lun “Hibrv.p)+ 288%6*CF, (o 71T, + 08 13,5) -
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Thus,

ENT2 o CN T2 > O (i Ifbrv g + g HIbrvg) + 980 (lon 15 + llon ~17) -

(26)

M| —

After combining inequalities (25) and (26) we achieve the desired unconditional

stability bound (23). O

Corollary 4. If ff = f, = 0, then the averages, (u}™" +u}™")/2 and (¢} +

¢Z_1)/2, converge to zero as n — oo.

Proof. The bound (23) implies that the series > 0  {||V(up ™t +u))||} converges.
Thus, |V (u} ™ +u} )| — 0, as n — oo, and by the Poincaré-Friedrichs inequality,

uptt +u =t — 0 as well. (Similarly for (¢7F! + ¢~ 1) /2.) O

This shows that the CNLF-stab method controls the stable mode of Leap-Frog.
However, Theorem 3 does not imply control over the unstable mode. We check the

behavior of the unstable mode in the numerical experiments in Section 5.
4. Error Analysis of CNLF-stab

In this section, in Theorem 6, we establish the method’s second order convergence
over long time intervals. An essential feature of the error analysis is that no form
of Gronwall’s inequality is available as a tool.

We assume that the FEM spaces, X }’}, XI}} and Q;? , satisfy approximation prop-

erties of piecewise polynomials of degree r — 1, r, and r + 1:

inf |lu—u < Ch™ || -
i u s < OB oo

uhig(?ﬂu —up|lmr () < CR[|ullgre oy

inf — <Ch™Ht .
¢:Ielxg”¢ Pnllp < 9l zr+1(02,) (27)

3L 16 = nllra,) < CHél-s1(a,)

inf |lp—pully < CRHpllgre (o))
PheQ! ! (1)
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Moreover, we assume that the spaces X J}} and Q? satisfy the (LBB") condition. As

a consequence, there exists some constant C' such that if u € V;, then

w}réVhHu vnll () < mhlng’: lu = znll 1)) (28)

(see, for example, Girault and Raviart [8], Chapter II, Proof of Theorem 1.1, Equa-
tion (1.12)). Let N € N be given and denote t” = nAt and T'= NAt. If T = oo

then N = co. We introduce the following discrete norms.

N
k
|||UH|%2(0,T;Hs(Qf,p)) = Z v ||§{s(ﬂf,p)Ata
k=1
el i@y, = max [0 lme(@y,)-

In the proof of convergence to follow, we will need the bounds given in the next

lemma.

Lemma 5. (Consistency Errors) The following inequalities hold:

N— 2

+1 uk—l (At)4
> AL ; < 20 ||Uttt||L2(o T;L2(Q5))" (29)
N-—
¢k+1 ¢k 1 (At)
Z oy — 7 < [ betell T2 (0, 12(0,)) (30)
— At 20
N-1 wk 1 E—1\ |2 4
+ U T(At)
Aty | (k- ) = " oz G
k=1 f
N-1 2
¢k+1 + ¢k 1 7(At)4
sy v (ot~ < " oo,y 62)
k=1 p
N-1 1 k=1 |2 (At)*
ey |9 (- S )| < GVl 39
k=1 f
N-1
ALY @M = PR, < AAB6ull72 0,7, 0, (34)

k=1
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Proof. For inequalities (29)-(33) see Kubacki in [13] Section 3 Lemma 3.2. For the

proof of (34), we have

N-1 N-1 it
Y okt g = Ay | </ 6 d’f) "
k=1 k=1 7% \Vte—1

N—1 k+1 el
gAt/ / dt/ &2 dt dx
Qf ; tk—1 tk—1 t
N-1 th+1
=At [ > oAt / @2 dt da
Qf h—1 tk—l
N tk
< 2At2/ 2y ¢? dt da
Qf =1 tk*l
= 48 61ll72 0,7, 120, )) (35)
Similarly,
N-1
At Z IV ("' = ¢* ) 12 = 4AL2 Vil T2 0,1,02(0,))- (36)
k=1
Inequalities (35) and (36) combined give (34). O

Denote the errors by ef =u" —uy and el = ¢" — P}

Theorem 6. (Second Order Convergence of CNLF-stab) Consider the CNLF-stab
method (20)-(22). For any 0 < tny = T < oo, if u, p, ¢ salisfy the regularity
conditions

we LP(0,T; H™(Qy)) N L (0, T; HH () 0 HP(0,T; H' (),

p € L*(0,T; H™H(Qy),

¢ € L*(0,T; H™2(Qy)) N L>(0, T3 H™1(Q,)) N H(0, T3 H' (),
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then there exists a constant C > 0, independent of the mesh width h, time step At

and final time ty =T, such that

1 _ -
SUeF Irv.s + lef ™ orv.g) + 9o lley I + llep ™ I17)
N-1

v gkmin —
oY (FIVE + eI + L2 T 4 e )
k=1

< C{hQT{HUtH%?(o,T;HHI(Qf)) + |||U|H%2(0,T;m+1(9f)) + |||U|H%°°(O,T;H“"+1(Qf))
+ At oe17 + [lollI7 - }
tIL2(0,T;H 1 (Q2p)) Lo (0,T;H™+1(Qp))
B2 2l o st s + 96 stz ) + 10112 0.z 0}
4 2 2 2
+ A [l 120,81 (02))) F el zz0,m;m01 04y + 190l 20,7220, )
2
+ ||¢t”%2(0,T;H1(Qp)) + H¢tt”L2(07T;H1(QP))} + ||€M2D1v,f + ||€;1)||ip}-
(37)

Proof. Consider CNLF-stab (20)-(22) over the discretely divergence free space V" :=

{v, € Xf (gn,V -vp)y = 0Vg, € Qf} instead of Xf, so that the pressure term

k+1 k—1
(i V- vh) cancels out. Subtract (20) and (22) from the variational form

15) and (16) evaluated at time t* to get:
( g

k+1_ k-1 k+1_ k—1 k+1 k—
(uff%,vh) f(V'(%),th) +ay <uk7 7vh)
f f
- (pk7V'Uh)f+CI (vh7¢ — ¢n )
& ¢k~+17¢k~—1 k k+1+¢
So (cm — st te | tap | @7 — 5 ﬂ/fh
P
h» h)

—Atg’CF, (VL = 6171, Vi) — Atg*CH (™ = ok )y — e (uf — ul

Since vy, is discretely divergence free, we have that (pk7 V- vh)f = (pk — )\ﬁ, V- vh)

for any A\ € Q?. Further, (V “ulk, vh) = 0. Thus, after rearranging we get:

E+1 k-1 K+l k—1 kbl k41
ef 7ef ) ef 7ef ef +ef k
< sar > vn ] HV A7 s Veup | +ay 2 s Un | T €1 (Uh’ep)
f f
B B gkl k1 B gkt k1
——(“t e o) Vo - ) Vo)

—ay (uk—%,vo +(pk—/\’,§,v-vh)f,
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k+ k+1 ek 1 _
950 ( ,1/Jh> +ap (+a¢h) + Atg*CF L (Ve — ey ™), Vi)
p

+ At9202 ( L k_lawh)p —Cr (6?7¢h)
= —g5 (¢f - %M/)h) —ap (¢k - MJM)

+ Atg?C3 (V(o" T — 771), V), + AtgCF (8T — ¢F 71 ).

Denote the consistency errors by:
k k k1 k-1 k k=1
Ef(vh):*(ut *%»Uh)f*(v‘@t — YA — )7V'Uh>f

k1, k—1
—ay (Uk - ,Uh) ,

ehn) = —0S (0F — Py ) + APCH (VM 6, V),
+ Atg20‘)2‘,p(¢k+1 - ¢k_17 wh)P — ap (¢k - M? quh) .

Decompose the error terms into

S W S B k1 _ ~k+1 Skl k4l k1 chtl
f+ = ufh — = (W At 4 (@t _Uh+):77f+ +§f+7

eptl = M — gt = (" = M) + (P — T =+ T

and take @t € V" and ¢Ft! € X}, so that §k+1 € V. Then the error equations

become:

é-chrl_ék—l €k+1_£k—l £k+1+€k—1
< Ix— o) +( V- AL s | Fap | st v +CI(Uha§§)
f f
k+1 k—1 k+1 k—1 k+1 k—1
n n ny' =N +n
<f2mf 7Uh)f_<v.<f2mf ),V-vh>f—af( 2f 7Uh)

- Cl(fvhanlg) + El;(vh) + (pk — )\Z, V- Uh)f
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50 (i on) +ap (S5 ) + MO (VI - 7). V),
p
+ Atg?CF (65 = & )y — er (€, ¥n)
=—95 (W,wh) —ap (vah) +er(nf, ¥n)
p
— Atg®C3 (V™ =y ™), Vibn)p — Atg®CF (s ™ — k™ bn)p + e ().

Pick v;, = §k+1 553_1 € V" and ¢, = 5 4+ ¢81 € X)) in the equations above

and add to obtain:

2At (”ka”DW,f + QSOHf;];H”;Q; + At292c‘?,p||€§+1”§—[1(ﬂp)>
— s (1657 Bor s + 9SollEh 12+ ARG NEE 1o, )
+ [en(eftt + € ) — (e g+ g

b a4 T ) a4 g )

1 —
— m |:(’r]l;+1 — nf ’§k+1 +f? l)f =+ (V (nl;+1 77"; 1)7 (€k+1 £k+1>)f:|

1 L k1 ghtl ekl
2At[gSo( =y L& G,
AL CF L (V0 =y ™) V(G &)y + At CF (T =y G 7))
1 _ _ _
-3 [af (’7’;+1+77f Lkt gh 1) T ap (Yl Ry gk 1)}

fh@“%w?%%%wm#$“+$*ﬂ

e e+ (0 MV ) et v,

Rewrite the coupling terms on the left hand side equivalently as follows:

(€T L) — e g 6T
= (cr(h™, ) — er(eh, %) = (ereh &) — en(€b ™€)

fo—
— Cﬁ

k+2

[N

=C;
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If we denote the £ energy terms by

k+1 2 k c
EETY? = €63, 1+ gSollESTH2 + AG2C2 IER 20 g,

+ ||€JI§H2DIV,f + 950”55”?) + AthQC?,pl\ﬁ,flI?p(np)
and also apply the coercivity of the forms ay(-,-) and a,(-, ), the inequality becomes
1 _ _1
RENE TNTo/ kI S TN

+ At (VIV(ER + €713 + ghmanl V(65T +E572)

<- {(nlfﬂ 7£k+1 +£1;—1>f I (V (n?-&-l nl; 1)7 (§k+1 +§1;—1))J

=[S0 (™" =y~ T H T, + 28867 CF (V0T =) VG T 67,

+ 2At2 202 ( k+1 n§71,§§+1 +§I];:71)p}
- At {af (WI;H et + 51}71) +ap (ot TG 5571)}
— 2At {cz(fkﬂ +& ) - 01(77}“,5,'5“ + 55_1)]

200 [SEFT 6T+ 0F MLV T ) g g
(39)

where we multiplied through by 2At. Next, we bound each term on the right
hand side of the above inequality. We bound the first two terms by the standard
Cauchy-Schwarz and Young inequalities along with the Poincaré inequality (6) and

inequality (8).

(n/;Jrl k— 17£k+1+§l;71)f+ (V (nl;+1 nl; 1)7 (§k+1+€l;—1))f

< Zraypen et S 1o (et ) 12 A et + b3
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9o, =y &+ 67N, + 28880, (V (T - ) V(T 67Y),

+208°6°CH, (it =gt g7

159Ch,, 42 k1
< oAy (50 +4ALGCE,) 7
0At3 304 gkmzn
——?—JQW(“lnﬁwm+m IV + &I

To bound the second term, we apply the continuity of the bilinear forms a¢(-,-)

and ap(-,-). Letting M =v + aCkmm gives:

ar(mi™ g+ 7Y Jrap(nf.f+1 R S

< MV + 0OV ET + €71 + ghmaal V™ + D11V + 67Dl
3M — gkmaz

< VO OIF + S o IV I
+ *IIV(ﬁ’“Jrl O+ "“”IIV( S S ] =

We bound the coupling terms on the right hand side using the trace (7), Poincaré
(6) and Young inequalities. Letting C' = ngngzp Cp,tCppg?, this yields

cr( € € my) — e T 67

<g (H(SkH &Ny - agllelmillc + llnf - agllllEpt + 5571”1)

< Co,Ca, g (€57 + €511 2IV (R + DI Ink 1/ 219mg12)

_ — 1/2 1/2
+0@“+¢lwwW$“+$HMWmnmeV)

<¢*NWéﬂ IVl + IV +€5D),)
5C _ gkmm —
. o2+ *Hv(flchl +ETHIF+ = 50 IV (& A S

Finally, we bound the consistency errors, 5’]’% and 5’;, and the pressure term as

follows. We use the Cauchy-Schwarz, Young and Poincaré (6) inequalities as well
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as inequality (8).

k1 k1
_ (V. (uf - um:) <§k+1 n 51;1)>

k+1 k—1 k+1 k—1
u u ut —u
<C k_ d .
<ot 55 e (- )
! !
W k-1
wr | (- )| >|v & el
902 k1 _ k=102 gpr2 k+1 k=1 |2
by uf—u “ + V(w4 —T% tu
v 2At f v 2 f
9d? P T ? R 71 2
| ()| e 3.

ek (ER T 4 b1y = g8y (@ — Prtl — gkt Bl h—1
p\Sp D - g 0 ¢t 2At 5 E
P

+Atg*CF L (V(0F T = o), VI + 67,

22 [ k41 k—1 chtl | ch—1 R O M e
+Atg Cf,p(gb _¢ 7€p +£p )p _ap ¢ - f’gp +€p
S (OP,p

PR _ gk o <¢k gy ¢k1>
+Atg2CF, (IIV (6" = P )l + Cpplld™ — ¢k_1|p)> IV + 6Dl

2At + gkmax

p

oF —

2

p

_ 109530123@ - PFL — g1

¢ 2A¢

2 2 3,14
10At°g°C
+ L)y (ph+ — ¢h )2

X ¢k+1+¢k71 2
V(=)

kmin

P kmzn

10At2 30?170123;0 k1 k—12 logkmarc

kmzn kmin

kmzn
+ IV(EET + &2,

(" =MV el ) <ot = MY - € €

<*Ilp = MllF + 55 IIV(é’“+1 +EHIG-
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After absorbing all the resulting £ terms into the left hand side of inequality (38)

and grouping together the remaining terms, the inequality becomes
k+% k+1 k—1 k—1
Ee ? + 200, * — B, * —2AtC,

— gkmzn —
+ e (FIVE + €I+ L2 v + g I2)

_ 6CP _ 59013 _
< (At) 1{ f” k+1 k 1”?4_747(50_’_4At4 20 )||77k+1 77]1; 1”2

kal
+ ) (a1 =) ||;}

30AL2g3C4 3M -

] 2R (e gty 2+ B s ey
5gkmam - 120 10C
oIV DI+ = IIVn’}H?erIIW’;IIi

18C3 ¢ ukHt — k| 182 T A T 2

+ - t 2At + V u — 72
f v f

1842 Y Jlad

+—|V (Ut w) || Anllf

f

202 —12 2 304
QOQSOCP,;; . ¢k+1 _ ¢k 1 n 20A¢t g Cf,p ||V(¢k+1 B ¢k_1)H2
kmin K 2At P k7rLi7L P
2 34 2 - 2
20At%g Cf,pCP,p |¢k+1 ¢k 1” 209kmam \V/ (¢k — W) }
kmin p m'm 2 P
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Now, we sum this inequality from k = 1,..., N — 1. This yields

_ 1 _ 1 1 1
Eév 2 +2At0év T _ B2 _9AIC?

N—
— kmin —
rae Y (D19 (g e ) 5+ S o 1 o)

k=1

N 2 2
6C%, - 159C2, -
EZ{ = I TG e (SE A AAGRCE ) N =

+ o (e — ) 2 }
30At2g3C4 3M

N—
+ At Z { fp||V( k+1 77}1;71) ||§
k=1

HV( POl

mzn

+

12
wk L k-1

¢ 2A¢

2

5gkf,mm 10C
oIV AR )||p+7||V77fo+7||V77p||p
main g
18 M2
+
f v

- <uk B uk‘+1 +Uk1>
2
WU g 1P 12d
v ("f 2At )

- + B
2095801234) - ¢k+1 _ ¢k71

f
2 20A82g3CY,
Emin t 2At +
2 3,14 2
20At2g3CY C

LV (g — "2
Pp

N 18C3 ¢ ‘

!
184>
+—

Ml

P kmzn
20gk2

kmzn

~7J "max

2
" — D + }

P

X ¢k+l+¢k—1
V()

kmin

To obtain a bound involving norms instead of summations, we use the Cauchy-

Schwarz and other basic inequalities to bound each term on the right hand side as

follows. For the first term, we have:

N—1 N— Rl 2
k+1 k— 1
”77 * — Ny Z - ny,edt
k=1 k=1 ¥
N— L
<y / at) [ el s
k=175 et
< AAHngill72 0,15020,))- (39)
Likewise, we treat the second term,
N-1
gt =3 < 4At||7lp,t||2L2(0,T;L2(Qp))- (40)

~
Il

1
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In a similar manner we bound the third and fourth terms.

=

—1

STV (0 = nf ) I3 < AUV a0 s, (41)
k=1
N-1
IV (™ =y~ h) 112 < 4AH| Vi, Te0.m12(9,)) - (42)
k=1
Inequalities (39) and (41) imply the following.
N—-1
(st = 13+ 09 (™ = ™) I3 } < 48tingu e,y (43)
k=1

The rest of the n terms are bounded using Cauchy-Schwarz and the discrete norms.

=2

N—-1

IV + 05 ) (I 102 + 1905 13)
k=1 k=1
N (44)
Z IVnfF < 4(At)~ 1|||V77f|\\%2(0,T;L2(Qf)),
k=0
N—-1
IV +nE 1% < 440 91320, 7,222, (45)
k=1
N-1
>IR3 < (A IVl I 0,rinz@ - (46)
k=1
N-1
[Vl < (At)_l|||v"7p|||%2(0,T;L2(QP))7 (47)
k=1
N-1
" = A3 < (AO 7 I = Anll20.7:22(0)- (48)

k=1

After applying bounds (39)-(48), along with (29)-(34), and the bound (26) from

the stability proof, and after absorbing all the constants into one constant, 61, the
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inequality becomes

1 _
SUE N Drv, + 1165 v, ) + 980 N5 + 11gy 1)

N-1
— gkmzn —
oY (FIVEET + &I + L2 vies + g R)
k=1

4
{ant”m 0.T;H () T ||77p,t||L2(0T r2(0,)) T At IV, ]|7 L2(0,T;:L2(2,))

F Vsl 20200, + 1V lI7200,7:02(0,)) + At4( el 720,750 (02, )

+ ||Utt||L2 O.T:H Q) T ||¢tttHL2(OT 20,0 + 192 0,101 0,)

2 1/2 1/2
T 10eell 220,101 (2,)) ) +llp — Ah'H%Z(O,T;LQ(QJc))} + Eg/ + 2AtC§/
(49)

Recall that the error terms equal e}v =uN — uflv = n}v + f}v and eév =N — (th =

U,])V + 5}1}\1 . Applying the triangle inequality we have

g5
0(H6N||2+|| YH2)

1 _
Z(”eNf||2DIV,f + HG}V 1H2DIV,f) +

N-1
v gkmin _
ar Y (SIVE e+ 2 v o)
k=1
1 —
*(||§f ||DIVf + H§ ||2DIV,f) +950(||§ész + ||§év 1||;2>)
2
N-1 ok
0T (FIVE &1 + v + 12
k=1
1 2 2
*(||77f ”DIVf + H77 ”DIVf) +950(||77p 5 + ||77 ||p)
2
N-1 ok
+Atz (HV( .1f+1+nlfc—1)||3c+ manv( k+1 +77];§1);2>> )
k=1

Notice that [}, 12,,. 35 12, < 07012 07,120, .y) and therefore [0} [3,,

d|| |77f|||LOQ(0 7511 (0, This fact, together with the previous bounds for 7 terms and
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inequality (49) result in

1 - 950 _
21N B vy + ey D) + 50 (e I+ lley )

N-1

14 — gkmzn —
+AEY (4||V(e’;+1 +ef 3+ T [V (bt + ek 1)|]§>
k=1
< C2{||77f,t| %Z(O,T;Hl(Qf)) + ||77P7t||%2(0,T;L2(QP))
+ AV ] 2L2(0,T;L2(Qp)) + |||V77f|||2L2(0,T;L2(Qf)) + |||V7Ip|||2L2(o,T;L2(Q,,))

2 2 2

+ At4( etz 0,00 2p)) + el 20,1 0))) + 19ttt 207522 (0, ))
2

+ H¢t||%2(0,T;H1(Qp)) + el 20,111 (02, > +llp— >‘h|||%2(O,T;L2(Qf))

+ H|77fH|%°°(O,T;H1(Qf)) + |||771)H|%°°(0,T;L2(Qp))} + &5 lDrvy + 1€ D v,

1/2
+ 950513 + 160 117) + ALg*CF (1613, + 16513 ) + 24¢C¢ 7,

(50)

where we absorbed all constants into a new constant, 62 > 0. Now, we bound the

coupling terms on the right hand side as follows:

C
1/2
Ce" < 5 (16013 + 1615 5 + 1€5 1B rv.s + - B v ) (51)

Inequality (50) holds for any @ € V", )\, € Q?, and ¢ € X;j. Taking the infimum
over the spaces V", Q% and X!, using (28) to bound the infimum over V" by the

infimum over X J’} and using bound (51), we have the following for some positive
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constant 63:

1 _ _
SUe slbrvs + lle ™ brv) + gSollley 5 + llep " 17)

N—-1
v k k— Gkmi k ke
# 80T (GIV + 7 + S e+ ek
k=1

< 03{ ﬂelgh{ﬂﬁﬁt||2L2(0,T;H1(Qf)) + |||V77f|||%2(0,T;L2(Qf))
ucAy

+ |||77fH|%oc(0,T;H1(szf)) + ||§}H%)1v,f + ||f,0f||%lv,f}

+ inf — |2 . + inf 2 .
= ,;H\P h|HL2(o,T,L2(Qf)) P g{”np,t”Lz(O,T,L?(Qp))
+ At Vnp.ll7 + 11Vl 17 + lmplll7<
ptlIL2(0,T;L2(Q,)) Mol L2(0,1;L2(9,)) Mp Lo (0,T;L2(22,))

2 2
U + 10023 + A (el ooy + Nl o arsiony

2 2
+ Dol T2 0.0:020,)) F 10l F20,m0m1 0, ) + 1966l 2 0,051 (02, ) }

The result of the theorem now immediately follows by applying the approximation

assumptions given in (27). O

Corollary 7. Under the same regqularity conditions as in Theorem 6, the temporal

growth of the error is at most

lef Irv.s lley Il = O(Viw).

Proof. For any function v : [0,00) — X and any spatial norm || - ||x we have

tN
/0 Joll% dt <t 02 0cer

for any 0 < T' < oo. Similarly for the discrete norms we have
N N
D0 5 At < ol G 0,000x) D A = v [[0]F o (0,00,%)
k=1 k=1

Applying the above to the terms on the RHS of (37) gives the claim of the Corollary.
O
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5. Numerical tests

We verify the method’s unconditional stability and rate of convergence in a
series of numerical tests. For these experiments we use the exact solutions intro-
duced by Mu and Zhu in [16], recalled next. All experiments were conducted using

FreeFEM++ [19].
Qr=(0,1) x (1,2), Q, =(0,1) x (0,1), I={(z,1):2€(0,1)}

u(z,y,t) = ((x2(y —1)% 4 9) cos(t), (gm(l —y)® +2 — mwsin(nx)) cos(t))

p(z,y,t) = (2 — wsin(mx)) sin(gy) cos(t)

o(x,y,t) = (2 — mwsin(mz)) (1 — y — cos(my)) cos(t)

To confirm unconditional stability of the CNLF-stab method we set the body force
and source functions, f; and f, equal to zero. We also enforce homogeneous Dirich-

let boundary conditions, except along the interface I.

5.1. Test 1 - Unconditional Stability (CNLF’s CFL (2) violated). We set
h = At = 0.1. We calculate the energy of the system over the time interval [0, 10].
In Figure 2 we take Sy = 0.1 and k3, = 1.0, while in Figure 3 we consider the
case of a confined aquifer and set Sp = 1076 and k.5, = 10~%. The values for Sy,
At and h in both cases violate the stability condition (2) for original CNLF. The
energy of CNLF-stab decays to zero over time, as expected, while CNLF blows up
in both cases. In particular, CNLF experiences a drastic increase in system energy

in the second case (Figure 3b).

5.2. Test 2 - Control of Unstable Mode (CFL (2) holds). We test the effect

of CNLF-stab on the unstable mode of Leap-Frog, given by HwZJrl —wy

_1||?c7p for
w = u, ¢, in Figures 4 and 5. For these tests we set h = At = 0.05 and further Sy =
1.0 and Ky, = 0.1. In [13], it was shown that decreasing the value of k., from 1.0
to 0.1 led to instability even though condition (2) holds. Numerical tests showed the
sudden rise in energy corresponded to spurious oscillations in the unstable modes.

We calculate these unstable modes in both the Stokes velocity and Darcy pressure
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4 T T T T 200
35
3 1 150t
2.5(]
= Hl 1 100k
I 2 I 100

1r 1 501

0 20 40 60 80 100 0 20 40 60 80 100
Time(n) Time (n)

(A) CNLF-stab (B) CNLF

FIGURE 2. Energy with Sp = 0.1, kmin = 0.1,h = At = 0.1,T =
10 = (2) violated

250

12>(1O
4
3.5 10
3
8t
2,50
= 6
T 2 w
1.5H aF
1k
ol
0.5¢
0 0 . . . .
0 20 40 60 80 100 0 20 40 60 80 100
Time(n) Time (n)
(o) CNLF-stab (B) CNLF

FIGURE 3. Energy with Sy = 1075, kpin = 10740 = At =

0.1, T = 10 = (2) violated
variables and compare them to the total energy of the method at each time step.
Notice in Figure 4 that the energy and unstable modes of CNLF-stab decay to
zero, while we observe a rise in the energy for CNLF in Figure 5 corresponding
to oscillations in the unstable modes. Therefore, numerical tests indicate that
CNLF-stab damps the unstable mode of Leap-Frog. Theoretical verification that

CNLF-stab does control the unstable mode is an open question.

5.3. Test 3 - Convergence Rate Verification. We next test the convergence
rate of the CNLF-stab method. We set the parameters «, v, Sy, K, g, equal to
1 and apply inhomogeneous Dirichlet external boundary conditions: w, = w on
Qr\I, ¢, = ¢ on Q,\ I. We chose the initial conditions, as well as the first terms

in the method, to match the exact solutions. We set h = At and calculate the



UNCONDITIONALLY STABLE PARTITIONED METHOD FOR STOKES-DARCY

CNLF-stab

29

T
—=— Energy

—6— Unstable Mode u |
—+— Unstable Mode ¢

0.8—
0.6—

04—

i & " 4 " 4

Time (n)

FiGURE 4. CNLF-stab Energy and Unstable Modes with Sy =
1.0, ki, = 0.1, h = At = 0.05,7 = 5.

x10* CNLF

—=— Energy
—e— Unstable Mode u
3 —— Unstable Mode ¢

0 I I L I L L I

0 20 40 60 80 100 120 140
Time (n)

FicUrRe 5. CNLF Energy and Unstable Modes with Sy =
1.0, kmin = 0.1, h = At = 0.05,T = 10.

errors and convergence rates for the variables u, p, and ¢ in Table 3 over the time

interval [0, 10]. Define the norms for the errors, E(u), E(p), and E(¢), as follows.

E(u) = |[[u = unlllLo0,7;:01v (2;))
E(p) = |llp — pulllz=(0,1:2(2,))>

E(¢) = [[|¢ — onlllLe(0,7:02(2,))-

We let 7, ¢4 denote the calculated rate of convergence. As expected, we have second

order convergence for the Stokes velocity, u, and Darcy pressure, ¢. However, we do

not have second order convergence for the Stokes pressure, p. A further numerical

investigation of this effect on the convergence of the Stokes pressure follows.
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h=At] Ew) [ r | E@ |1 [E®
1/4 ]6.98 x 1072 1.54 x 1071 2.65
1/8 [1.58x 1072 [2.14 | 3.85 x 1072 | 2.00 | 2.56
1/16 |4.15x 1073 [ 1.93[9.62 x 1072 [ 2.00 | 2.35
1/32 [ 1.12x 1073 [ 1.89 [ 2.40 x 1073 [ 2.00 | 1.34

TABLE 3. Errors for CNLF+Stab

5.4. Test 4 - An Anomaly in the Stokes Pressure. We examing the lack of
second order convergence for the Stokes pressure p in the above table by conducting
a series of tests to isolate the anomaly. We ran the same convergence tests to analyze
the errors in regular CNLF in Table 4, CNLF with added Grad-Div stabilization
terms in the Stokes equation (CNLF-GradDiv) in Table 5, and CNLF with the
added O(At?) stabilization terms in the Darcy equation (CNLF-StabDarcy) in
Table 6. The Stokes pressure is second order convergent in both CNLF and CNLF-
StabDarcy. In tests for CNLF-GradDiv, we obtained the same results for the Stokes
pressure error as we found for CNLF-stab. This suggests that the added Grad-Div
stabilization term in the Stokes equation adversely affects the convergence rate of
the Stokes pressure.

Surprisingly, when we calculated ||[V-up|l|z2(0,7:02(0;)) |||v'“h,t”|i2(0,T;L2(Qf)) =
Sy V- %H?, and [[[pn||z2(0,7;22(0,)) for CNLF-stab in Table 7, we see
that |||V - unlllz2(0,1:22(0,)) and |||V - unll|22(0,7;22(0,)) converge to zero while the
discrete norm of the pressure is still stabilizing. We obtained the same numerical
results for CNLF-GradDiv. When we calculated those same norms for CNLF in
Table 8 we see that |||V - unl||L2(0,7;02(0,)) and |||V - unelllz2(0,1:22(0,)) converge to
zero and the discrete pressure norm converges to 1.56. We obtained similar results
for CNLF-StabDarcy, given in Table 9. We have no theoretical explanation for this

effect. It is another important open question.

h=At]  E(u) E(9) E(p)
1/4 [1.18x 1071 [ 5.27 x 1072 1.52
1/8 [1.97x1072[1.12x 1072 [ 2.88 x 107!
1/16 [ 4.84 x 1073 [2.29 x 1073 [ 5.96 x 1072
1/32 [1.22x 1072 [ 572 x 10~% | 1.44 x 1072

TABLE 4. Errors for CNLF
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h=At]  E(u) E(@) [ E@)
1/4 [6.98x1072[527x 1072 | 2.64
1/8 [1.58 x 1072 [ 1.12 x 1072 | 2.56
1/16 |[4.15x 1073|229 x 1073 | 2.35
1/32 [1.12x 1073 [ 5.72x 1071 | 1.34

TABLE 5. Errors for CNLF-GradDiv

h=At]  E(u E(9) E(p)
1/4 [8.41x1072]3.85x 1072 1.02
1/8 [1.91x1072[3.85x 1072 | 2.56 x 107!
1/16 [ 4.84x 1073 [9.62 x 1072 [ 6.09 x 1072
1/32 1.2273  [240 x 1073 | 1.45 x 1072

TABLE 6. Error for CNLF-StabDarcy

=8t [ IV - unllly TV - wnellly | Mlpalls
1/4 [ 1.6x107" | 22x10°1 | 513
1/8 [351x1072 [ 551 x1073 | 4.92
1/16 [4.15x 1073 [ 235 x 1073 | 2.35
1/32 [1.12x 1073 [ 955 x 107% | 1.34

TABLE 7. Discrete Norms for CNLF-Stab

=AY - unlly TV - unellly | Mlpally
1/4 218 x107t [ 578 x 10~ | 2.71
1/8 [447x1072]214x1071 | 1.63
1/16 [ 1.12x 1072 1.02x 10°F | 1.56
1/32 [281x1073 | 4.24x 1072 | 1.56

TABLE 8. Discrete norms for CNLF

h=At] IV ullly T 1V -udly TPl
1/4 [ 1.98x 1071 [ 453 x 1071 | 2.40
1/8 [4.41x1072[2.06x 10~ 1] 1.62
1/16 | 1.11x 1072 | 4.16 x 10~* | 1.56
1/32 |1.22x 1073 9.59 x 10~* | 1.56

TABLE 9. Discrete Norms for CNLF-StabDarcy

6. Conclusions
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The added stabilization terms in the CNLF-stab method correct one of the two

shortcomings of original CNLF, namely the conditional stability. Theoretical and
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numerical analysis of the CNLF-stab method showed that the stabilization main-
tains second order convergence in the Stokes velocity and Darcy pressure variables
while eliminating the dependence on the specific storage parameter, .Sy, for stability.
Numerical tests suggest that the added stabilization terms dampen the effect of the
unstable mode from Leap-Frog, in contrast to regular CNLF. Our tests reveal two
important open theoretical questions: (1) Whether the added stabilization terms in
CNLF-stab control the unstable mode of Leap-Frog, and (2) Why the fluid pressure

p fails to be second order convergent with CNLF-stab.
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