## Preliminary Exam in Analysis, January 2023

Problem 1. Let $\left\{f_{n}\right\}$ be a sequence of $C^{\infty}$ functions on a compact interval $I$ such that for each $k \geq 0$ there exists $M_{k}$ such that

$$
\left|f_{n}^{(k)}(x)\right| \leq M_{k} \quad \text { for all } n \text { and } x \in I
$$

Prove that there exists a subsequence converging uniformly, together with the derivatives of all orders, to a $C^{\infty}$ function.
Hint: A function $f$ is $C^{\infty}$ means that $f \in C^{k}$ for all $k$. You may consider using a diagonalization argument.

Problem 2. Compute the surface integral

$$
I=\iint_{\Sigma} \frac{x d y d z+y d z d x+z d x d y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

for each of the following cases:
(1) $\Sigma=\left\{(x, y, z): x^{2}+y^{2}+z^{2}=t^{2}\right\}$;
(2) $\Sigma=\partial V$ where $V$ is a bounded smooth closed region that does not include the origin;
(3) $\Sigma=\partial V$ where $V$ is a bounded smooth closed region that contains the origin.

Problem 3. Assume $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function. Given that for all $x, y \in \mathbb{R}^{n}$ we have

$$
f((x+y) / 2) \leq \frac{1}{2} f(x)+\frac{1}{2} f(y)
$$

show that actually for any $\lambda \in[0,1]$, and any $x, y \in \mathbb{R}^{n}$ we have

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

You don't need to use any convexity properties, but if you do: you must prove all of them. You can not assume that $f$ is differentiable.
Hint: The result is obviously true for $\lambda=1 / 2$. You may try proving it for $\lambda=1 / 4$ and $3 / 4$, and from there to try to find a pattern.

## Problem 4.

(a) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a continuous map. Assume that $U \subset \mathbb{R}^{n}$ is connected. Show that $f(U) \subset \mathbb{R}^{m}$ is connected.
(b) Show that there is no $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ such that

- $f$ is continuous
- $f$ is injective
- for any open set $U \subset \mathbb{R}^{2}$ we have $f(U)$ is open

Problem 5. Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices. Prove that there are neighborhoods $U$ and $V$ of the identity matrix $I_{n}$ such that for every $A \in U$ there is a unique $X \in V$ such that $X^{4}=A$, where here $X^{4}$ is a matrix power.
Hint: Implicit or inverse function theorem.
Problem 6. Let $F=\left(F_{1}, \ldots, F_{n}\right): \mathbb{R}^{n} \mapsto \mathbb{R}^{n}$ be a differentiable mapping satisfying $F(0)=0$. Suppose that

$$
\sum_{i, j=1}^{n}\left|\frac{\partial F_{i}}{\partial x_{j}}(0)\right|^{2}=c<1
$$

Prove that there is a ball $B$ in $\mathbb{R}^{n}$ centered at 0 such that

$$
f(B) \subset B .
$$

Hint: Note that here $F$ may NOT be $C^{1}$, and hence no implicit/inverse function theorem. Try using differentiability.

