Preliminary Exam in Analysis, January 2023

Problem 1. Let $\{f_n\}$ be a sequence of C^{∞} functions on a compact interval I such that for each $k \geq 0$ there exists M_k such that

$$|f_n^{(k)}(x)| \le M_k$$
 for all n and $x \in I$.

Prove that there exists a subsequence converging uniformly, together with the derivatives of all orders, to a C^{∞} function.

Hint: A function f is C^{∞} means that $f \in C^k$ for all k. You may consider using a diagonalization argument.

Problem 2. Compute the surface integral

$$I = \iint_{\Sigma} \frac{x \, dy dz + y \, dz dx + z \, dx dy}{(x^2 + y^2 + z^2)^{3/2}}$$

for each of the following cases:

- $(1) \ \Sigma = \{(x,y,z): x^2+y^2+z^2=t^2\};$
- (2) $\Sigma = \partial V$ where V is a bounded smooth closed region that does not include the origin;
- (3) $\Sigma = \partial V$ where V is a bounded smooth closed region that contains the origin.

Problem 3. Assume $f : \mathbb{R}^n \to \mathbb{R}$ is a continuous function. Given that for all $x, y \in \mathbb{R}^n$ we have

$$f((x+y)/2) \le \frac{1}{2}f(x) + \frac{1}{2}f(y),$$

show that actually for any $\lambda \in [0, 1]$, and any $x, y \in \mathbb{R}^n$ we have

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y).$$

You don't need to use any convexity properties, but if you do: you must prove all of them. You can not assume that f is differentiable.

Hint: The result is obviously true for $\lambda = 1/2$. You may try proving it for $\lambda = 1/4$ and 3/4, and from there to try to find a pattern.

Problem 4.

- (a) Let $f : \mathbb{R}^n \to \mathbb{R}^m$ be a continuous map. Assume that $U \subset \mathbb{R}^n$ is connected. Show that $f(U) \subset \mathbb{R}^m$ is connected.
- (b) Show that there is no $f : \mathbb{R}^2 \to \mathbb{R}$ such that
 - f is continuous
 - f is injective
 - for any open set $U \subset \mathbb{R}^2$ we have f(U) is open

Problem 5. Let $M_{n \times n}$ denote the vector space of $n \times n$ real matrices. Prove that there are neighborhoods U and V of the identity matrix I_n such that for every $A \in U$ there is a unique $X \in V$ such that $X^4 = A$, where here X^4 is a matrix power.

Hint: Implicit or inverse function theorem.

Problem 6. Let $F = (F_1, \ldots, F_n) : \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable mapping satisfying F(0) = 0. Suppose that

$$\sum_{i,j=1}^{n} \left| \frac{\partial F_i}{\partial x_j}(0) \right|^2 = c < 1.$$

Prove that there is a ball B in \mathbb{R}^n centered at 0 such that

 $f(B) \subset B.$

Hint: Note that here F may NOT be C^1 , and hence no implicit/inverse function theorem. Try using differentiability.