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ABSTRACT 

 We model the diagnostic process in medicine as a map that iterates the 

probability density function (PDF) on a combined state/parameter space X of a 

mechanistic physiological model. This map incorporates a PDF on an observation space 

Y, which can be based on a population-level prior or on updates of such a prior, as well 

as patient-specific measurements with stochastic characteristics reflecting measurement 

uncertainty. Using a simple differential equation model of cardiovascular physiology, 

and a typical differential diagnostic situation (hypotension, fluid challenge) as an 

example, we show in simplified 2- and 3-dimensional simulation settings that a) even 

assuming uniform priors on X, multimodal PDFs are induced, their peaks corresponding 

to differential diagnoses, and b) the methodology in principle allows the assimilation of 

observations of both static conditions and dynamic responses into a quantitative 

assessment of patient status. Implications for our theoretical understanding of the 

differential diagnostic process in medicine and for practical quantitative medical 

decision making, incorporating mechanistic knowledge, observations of the individual 

patients, and population level empirical evidence, are discussed. 

 

PACS codes:  

87.10.+e  (Biological and Medical physics: General theory and mathematical 
aspects) 
02.30.Zz  (Inverse problems) 
02.50.Tt   (Inference Methods) 
87.19.Uv  (Properties of higher Organisms: Haemodynamics, 
Pneumodynamics) 
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1. INTRODUCTION 

A.  Motivation 

The amount of quantitative data available to the clinician at the bedside has 

grown tremendously due to advances in medical monitoring and imaging technology. 

This situation is particularly evident in the critical care setting, where patients are 

monitored and treatments are titrated on a minute-to-minute basis. The limit of the 

currently available methodologies’ capability to assimilate this flood of data into the 

diagnostic and therapeutic process seems to have been reached. This is evidenced by the 

fact that an improved capacity to acquire quantitative measurements that convey 

information highly relevant for therapeutic decision making has failed to improve 

outcome [1,2]. The difficulty in translating richer data streams into improved clinical 

outcomes may be partly due to insufficient therapeutic options. We contend, however, 

that this failure may also be ascribed to the human care providers’ limited ability to 

integrate the sheer volume of available data and to quantitatively interpret the 

complicated and often nonlinear interactions of the various physiologic subsystems that 

contribute to these observations [3]. Additionally, the current evidence-based medicine 

paradigm requires that therapeutic strategies be proven effective in prospective, 

randomized, controlled clinical trials. Such trials typically use as the basis for 

randomization a crude segregation of patients into relatively homogeneous subgroups, 

so that statistically significant differences in outcome between therapies and among 

subgroups are identified. This approach seems particularly paradoxical in critical care, 

in view of the massive volume of data available on individual patients, and of the 

resulting potential to provide truly individualized care [4-6]. This incongruence has 

clearly hampered more rapid progress in the care of the critically ill. 
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B. Traditional approaches to computer-supported decision making in 
medicine 

The potential of computer-based, algorithmic support for medical decision 

making in data rich environments, and in particular in the context of evidence-based 

practice, was recognized early on and has been pursued extensively [3,7,8]. Few of these 

efforts, which mostly have consisted of rule-based expert systems, statistical models, or 

approaches driven by machine learning ideas such as dynamic bayesian or artificial 

neural networks, have reached the maturity or level of usefulness to be accepted into the 

day-to-day practice of critical care medicine [8-10]. These tools either attempt to 

formalize empirical knowledge already available to a physician (expert systems) or to 

capitalize on statistical associations of phenomena and inherent structures of the available 

dataset. All largely fail to make direct and quantitative use of known causalities and 

dynamics in the physiologic systems underlying the observed pathophysiology, which 

are typically characterized by basic science investigations. 

A promising approach to incorporating this knowledge into the medical decision 

making process would be to use mathematical models of physiologic mechanisms to 

map clinical observations to quantitative hypotheses about physiologic conditions, 

leading to improved insight into current patient status and, eventually, predictions 

about responses to therapeutic interventions. While complex quantitative mathematical 

models of (patho-) physiology abound [11,12], their translation to clinically useful tools 

has proved challenging. Early examples of applying mathematical models of 

physiological mechanisms to quantify “hidden” parameters based on  clinical 

measurements include the pioneering work of Bergman in the late 1970s [13], in which 

an ordinary differential equation model of glucose control was used to quantify insulin 

sensitivity based on the results of standardized stimulation tests. More recent work in 
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the same field has focused on accurately quantifying the uncertainty arising in the 

resulting parameter estimation problems using current methodology, such as Markov-

Chain-Monte-Carlo approaches [14]. In the cardiovascular field, which is somewhat 

more central to critical care, some extremely simple models have been in use for decades 

and are implemented in commercially available products, examples being the electric 

circuit analog of the systemic circulation serving to calculate total peripheral resistance, 

which can then become a therapeutic target, or pulse contour analysis, which performs a 

model based assessment of systemic flow from arterial pressure waveforms and is still 

the subject of current research [15,16]. The clinical application of mathematical models of 

physiology to date has failed to extend to models of sufficient complexity to significantly 

help alleviate the previously discussed problem of information overload in the 

diagnostic process. 

C. Obstacles in applying complex mathematical models in a clinical 
setting: the inverse problem 

We contend that a key obstacle preventing the successful clinical use of available 

mathematical models has been the lack of a robust solution to the inverse problem. Since 

any physiologically reasonable mathematical model of components of the human body 

will typically be nonlinear and have a large number of parameters, the resulting inverse 

problem, i.e., inferring parameters and state variables from measured data, will usually 

be ill-posed in the sense of Hadamard, that is, not admit a unique solution that depends 

continuously on the data [17]. In addition to the uncertainty resulting from the 

fundamental ill-posedness of the inverse problem, measurement error and model 

stochasticity introduce additional sources of uncertainty that affect both forward and 

inverse problems (Fig. 1). 
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The most popular approaches to tackling the inverse problem assume the 

existence of a unique “best” solution, typically by looking for a maximum likelihood 

estimate by minimizing the sum of squared residuals. More recently, increasing 

attention has been paid to the quantification of the uncertainty of parameter estimates, 

using for example the Markov-Chain-Monte-Carlo method [14]. Despite considerable 

theoretical work and efforts devoted to the development of such algorithms, it seems 

unsurprising that their utility has been limited to the simplest settings (e.g., [18]).  

D. A proposed solution 

We hypothesize that the ill-posedness of the inverse problem reflects clinical 

reality in the sense that an experienced physician is rarely certain about a patient’s 

status, despite the large number of available observations. More typically, the physician 

entertains an evolving differential diagnosis, a list of hypotheses of varying likelihoods 

about the physiological mechanisms underlying available observations, updated and 

ranked according to current observations.  

We approach the inverse problem in such a way that uncertainty from all sources 

is quantitatively reflected by the solution, which will consequently take the form of a 

(typically multimodal) probability distribution on parameter and state space. To achieve 

this, we combine a mechanistic model of physiologic processes with Bayesian inference 

techniques to infer posterior probability distributions on parameter and state space from 

prior (population level and individual) knowledge and quantitative observations. The 

model itself, along with the inference techniques used, are presented in section 2 of this 

paper. In section 3, we provide a proof-of-concept implementation to illustrate the 

potential power of this approach. Finally, in section 4, we discuss implications of this 
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work as well as future challenges, and possible resolutions, to scaling this approach to 

realistic settings. 

Table I. Glossary of variables and parameters of the cardiovascular model.  

Symbol Description Unit 

HRf  Heart rate, i.e., the number of complete cardiac cycles per 
unit time 

Hz 

,Sys DiaT T  Duration of systole (ejection period of cardiac cycle) and 
diastole (filling part of the cardiac cycle), thus 

1

HR

Sys Dia

f
T T

=
+

 

S 

S
W  Stroke work, the work performed by the heart muscle during 

cardiac cycle/ejection period 
mmHg ml 

CO
I  Cardiac output, total flow generated by the heart per unit 

time 
ml/s 

S
V  Stroke volume, the volume of blood ejected during 1 cardiac 

cycle/ejection period  
Ml 

,
ES ED
V V  End-systolic volume, i.e. the ventricular volume at the end of 

the ejection period, and end-diastolic volume, i.e. the 
ventricular volume at the end of the filling period 

Ml 

0 0
, ,

LV LVED E
V P k

 

Constants characterizing  the passive empirical ventricular 
pressure/volume relationship 

ml, mmHg, 
ml-1 

valve
R  Hydraulic resistance opposing ventricular filling. The valve 

dynamics imposes unidirectional flow. 
mmHg s / 
ml 

ED
P  End-diastolic pressure, i.e. the intraventricular pressure at 

the end of the filling period 
mmHg 

P  Average ventricular pressure during ejection phase mmHg 

, ,
LV a v
P P P  Pressure in ventricular, arterial, venous compartment mmHg 

, ,
LV a v
V V V  Volume of ventricular, arterial, venous compartment Ml 

0 0
,

a v
V V  Arterial, venous unstressed volume, i.e. volume at which the 

pressure induced by wall tension is 0 mmHg 
Ml 

TPR
R  Total peripheral/systemic vascular hydraulic resistance, i.e., 

the hydraulic resistance opposing the flow through the 
capillary streambed that is driven by the arterio-venous 
pressure difference 

mmHg s / 
ml 

C
I  Flow through capillary streambed, i.e. from arterial to 

venous compartment 
ml/s 

PRSW
c  Preload recruitable stroke work, a contractility index 

describing by how much the stroke work increases with 
increases in diastolic filling, quantified through end-diastolic 
volume 

mmHg 

,
a v
C C  Compliance of arterial, venous compartment ml/mmHg 
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Baro
!  Time constant of the baroreflex response, i.e., of the linear 

low pass characteristic of the physiological  negative 
feedback loop controlling arterial pressure 

S 

set
a
P  Set point of the baroreflex feedback loop mmHg 

width
k  Constant determining the shape and maximal slope of the  

logistic baroreflex nonlinearity 
mmHg-1 

 

2. METHODS 

A. A simplified mathematical model of the cardiovascular system and its 
regulation 

The model we developed was designed to be computationally and conceptually 

simple while achieving a good qualitative reproduction of system responses to 

alterations in contractility and hydration status. It consists of a continuous 

representation of the monoventricular heart as a pump, connected to a Windkessel 

model of the systemic circulation in which arterial pressure is controlled by baroreflex 

([19], Fig. 2). The pulmonary circulation is excluded for simplicity, since the 

perturbations to be studied in our example are not directly related to it. The 

physiological variables and parameters used in the following exposition are 

summarized in Table I.  

1.  The heart as a pump 

We developed an ordinary differential equation model of the monoventricular 

heart by considering a single cycle representation of the emptying (ejection) and filling 

of the ventricle. The model of ejection was based on the experimentally observed 

linearity of the relationship between preload recruitable stroke work and end-diastolic 

volume over a wide range of volumes [20]. This linear relation takes the form: 

 
0

     (Preload recruitable stroke work)S

PRSW

ED ED

W
c

V V
=

!
. (1) 

Simplifying approximate stroke work as pure volume work yields: 
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 ( ) ( )      (Stroke work)
ES

ED

V

S S ED

V

W P V dV V P P= ! "#  (2) 

Substitution of (2) into (1) provides an expression for stroke volume. 

 0
( )

PRSW ED ED

S

ED

c V V
V

P P

!
=

!
 (3) 

 

Ventricular filling, on the other hand, is modeled as a simple passive filling through a 

linear inflow resistance driven by the pressure difference between central veins and 

ventricle, through the ordinary differential equation (ODE) 

 
( )

LV CVP LV LV

valve

dV P P V

dt R

!
= . (4) 

In (4), the dependence of ventricular pressure on ventricular volume is governed 

by the experimentally characterized exponential relationship: 

 0
( )

0( ) ( 1)E LV EDLV

LV

k V V

LV LV
P V P e

!
= ! , (5) 

yielding 

 
0

( )

0 ( 1)E LV EDLV

LV

k V V

CVPLV

valve

P P edV

dt R

!
! !

= . (6) 

Under the assumption of constant filling pressure 
CVP
P , the ODE (6) is of the general 

form 

 2

1 3

k VdV
k e k

dt
= + , (7) 

with constants 
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0
0

1

2

0

3

E EDLV LV

LV

LV

k V

valve

E

CVP

valve

P
k e

R

k k

P P
k

R

!
= !

=

+
=

, (8) 

which resolves to  

 
2 3 ( )

1
3

2 3

1 1 e
V( ) ( ) ln

k k t C
k

t k t C
k k

+! "#
= + # $ %

& '
 (9) 

by quadrature. By letting 0t =  at the beginning of diastole, using end-systolic volume 

ES
V  as the initial condition, and substituting the constants from (8), we determine from 

(9) the remaining unknown constant uniquely as 

 
0

( )

0

0

(1 e )1
ln

E ES EDLV

LV

LV LV

k V V

CVPvalve

ES

CVP E valve

P PR
C V

P P k R

!" #" #! +
$ %$ %= !

$ %$ %+ & '& '

. (10) 

At a given heart rate HRf , and assuming an approximately constant duration of 

systole SysT  (physiologically, the duration of diastole is much more strongly affected by 

alterations in heart rate than the duration of systole [21]), the end-diastolic volume will 

therefore be 

 1
V( )ED HR SysV f T

!
= ! , (11) 

with V( )t given by (9). 

Equation (11) provide a relation between 
ES
V  and 

ED
V , since V( )t depends on 

ES
V  through the constant in (10). A second relation is given directly by the fact that  

 
ES ED S
V V V= ! . (12) 
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Viewing 
ES
V  as a function  V ( )

ES ED
V% of  the end-diastolic volume of the previous beat, 

and 
ED
V  as a function V ( )

ED ES
V% of the end-systolic volume of the previous beat,  

respectively, we can thus define a discrete dynamical system describing the beat-to-beat 

evolution of 
ED
V  (or, similarly, 

ES
V ). Specifically, given the current end-diastolic volume 

n

ED
V , we can use (3) and (12) to compute V ( )n n

ES ES ED
V V= %  and use (9), (10), and (11) to 

obtain V ( )n
ED ES
V% . Together, these steps yield 

 1 V ( ) V (V ( ))n n n

ED ED ES ED ES ED
V V V

+
= =% % % . (13) 

To obtain a continuous dynamical system amenable to coupling with continuous 

representations of the physiologic control loops and simulation with available ODE 

software over long time intervals, we converted 
ES
V  and 

ED
V  to state variables of a 

continuous time system. This was done by setting their rates of change to the average 

rates of change over an entire cardiac cycle that would occur during one iteration of the 

discrete time system for the current  
ES
V  and 

ED
V  values, to obtain 

 
( )

( )

ES

ED

V ( )

V ( )

ES
ED ES HR

ED
ES ED HR

dV
V V f

dt

dV
V V f

dt

= !

= !

%

%

. (14) 

The discrete system (13) and the continuous system (14) share identical sets of fixed 

points. Indeed, fixed points of the discrete system (13) are given by 

 V (V ( ))
ED ED ES ED
V V= % % , (15) 

and by applying V
ES

%  to equation (15), we have  

V ( ) V (V (V ( ))) V ( )
ES ES ED ES ED ES ED ES ED
V V V V= = =% % % % % , 
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 thus 0
ES ED

dV dV

dt dt
= = at fixed points of the discrete system. Conversely, inspection 

shows that fixed points of (14) satisfy (15) and hence are fixed points of (13) as well. 

Consistent with the dynamics of (13), solutions to the complete circulation model 

(described below) incorporating the continuous time system (14) very quickly settle to a 

unique fixed point (Fig. 3). 

2.  The systemic circulation 

The circulation is represented by a simple Windkessel model, consisting of linear 

compliances representing large arterial and venous vessels of the systemic circulation 

with respective pressures 

 0

V V
P

C

! !

!

!

"
=  (16) 

where ,a v! = . The arterial and venous compartments are connected through a linear 

resistor representing the total peripheral resistance regulating arterio-venous capillary 

blood flow, 

 a v

C

TPR

P P
I

R

!
=  (17) 

To simulate the action of the cardiac valves, which do not allow for retrograde 

flow, the veno-arterial flow generated by the heart was set to 

 max(0, )CO HR ED ESI f V V= ! . (18) 

Assuming conservation of volume at the nodes, the evolution of arterial and 

venous volumes are thus described by the following differential equations: 

 

a

C CO

v a

external

dV
I I

dt

dV dV
I

dt dt

= !

= ! +

 (19) 
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where 
external
I  represents a possible external blood withdrawal or fluid infusion to or 

from the venous compartment. 

 

3. Baroreflex control of blood pressure 

Baroreflex control of blood pressure is implemented based on the established 

representation of the central processing component of the baroreceptor sensor input as a 

combination of a sigmoidal nonlinearity (logistic function, in our case) with a linear 

system [22,23]. For simplicity, we reduced baroreflex activity to a single activating 

(sympathetic) output instead of the more physiologically accurate balance of stimulating 

(sympathetic) and inhibiting (parasympathetic) outputs. Since our model of the heart is 

designed to represent time scales significantly larger than a single beat, the linear part of 

the baroreflex feedback loop is simplified to display first order low pass characteristics 

with a time constant on the order of the slowest actuator response (unstressed venous 

volume control). Pure delays associated with the neural transmission of baroreflex 

signals are neglected. Specifically, the temporal evolution of the stimulating output from 

baroreflex central processing is governed by the differential equation 

 
( )

1 1
1
1 width a aset

k P P

Baro

dS
S

dt e! " "

# $
= " "% &

+' (
. (20) 

 

The stimulating output S( )t  of the feedback loop acts on heart rate, total 

peripheral resistance, myocardial contractility (PRSW), and unstressed venous volume 

effectors/actuators to adjust blood pressure according to its current deviation from the 

set point, based on the linear transformation  

 max min min( ) S( )( )t t! ! ! != " +  (21) 
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where HRf! = , 
TPR
R , or  

PRSW
c , and 

 
0 0 0min 0minmax

V ( ) (1 ( ))( )
v v v v
t S t V V V= ! ! + , (22) 

since the venous capacitance vessels contract, reducing their unstressed volume, in 

response to drops in blood pressure. 

The combined system of the 5 coupled ODEs  (14), (19), and (20) was solved 

numerically in the MATLAB™ (The MathWorks, Inc., Natick, MA) environment. 

4.  Parameter selection 

The parameter selection process was based on fitting to literature data 

supplemented by physiologically reasonable assumptions and is fully described in the 

Appendix. It should be emphasized that our objective was to obtain a reasonably simple, 

biologically plausible model that describes certain phenomena of interest in a 

qualitatively correct fashion. 

B. The inference procedure 

1.  Notation 

To allow for a concise description of the procedure applied, we will use the 

notational conventions described in Table II. 

Table II. Notational conventions for the description of the inference procedure. 

Notation Description 

n
x X! " �  Element of n -dimensional initial condition/parameter 

space 
m

y Y! " �  Element of m -dimensional observation space Y  

:  ,  M( )    M X Y x x! a  Deterministic model generating observation vector from 
known parameters and initial condition 

: , ,f X Y! ! " ! =�  Joint probability density function on parameter/initial 
condition space or observation space 

( | ) : ;

, ; ,

f

X Y Y X

! "# $%#&

$ = # =

�
 

Conditional probability density function evaluated at 
! "#  given ! "#  
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: ,

   ( , ) g( , )true true

g Y Y

y y y y

! " �

a
 

Measurement characteristic giving probability density of 
observing y , given that the true value of the observable is 

true
y  

 
For the purpose of this exposition, we are lumping initial conditions and 

parameters into one product vector space, X. Additionally, for simplicity, we assume a 

fully deterministic model that gives a simple mapping from this finite dimensional 

parameter/initial condition space to a finite dimensional observation space Y (which 

may vary depending on the step in the inference procedure). Extending the method to 

stochastic models is straightforward but computationally more burdensome. 

2.  Inferring prior densities on the observables 

In a practical application, prior probability densities on parameter/initial 

condition space would be generated from a finite set of observations of a population, 

which in itself constitutes an ill-posed inverse problem. For simplicity, we assume a 

known prior distribution on parameter/initial condition space. To derive a prior 

probability density on observation space from these assumptions, we calculate 

 Y X

{ |M( ) }

f ( )  f ( )
x X x y

y dx x
! =

= " , (23) 

using Monte Carlo integration by sampling from the known prior densities on X, 

simulating, and estimating  
Y
f from the resulting set of simulated observations. To 

evaluate this density and sample from it,  we used the kernel density estimation 

approach as implemented in the kernel density estimation toolbox for MATLAB [24], 

using Gaussian kernels and the ‘local’ option for data based selection of kernel 

bandwidth. This toolbox provides an efficient implementation for the representation of 

arbitrary multidimensional probability density functions as a sum of kernel functions 
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with varying standard deviation/bandwidth, and allows for efficient sampling from, 

and evaluation of, these densities. 

3. Inferring posterior densities on the parameters 

The crucial step of inferring posterior densities on parameter/initial condition 

space from observations and prior probability densities was implemented based on the 

standard Bayesian calculation 

 Y X X
X

Y Y

f ( | ) f ( ) g( ,M( )) f ( )
f ( | )

f ( ) f ( )

y x x y x x
x y

y y
= = . (24) 

In equation (24), the prior densities f ( )
X
x and f ( )Y y represent either the initial 

assumptions on X  (see subsection C below) and Y  (see (23)) or the posteriors of a 

previous inference step, if sequential observations, possibly with interposed external 

perturbations (e.g. interventions or diagnostic challenges), are performed. In our 

implementation, the posterior densities are calculated on a uniform grid, with 

smoothing applied for the purpose of sampling from these posteriors again, based on a 

kernel density estimation approach. 

C. Simulating population variability 

Variability in the simulated population (i.e., in space X) was initially restricted to 

two lumped parameters/states. The characteristics varied were total intravascular 

volume 
total a v
V V V= + , corresponding to hydration status, and cardiac contractility 

response range  
min max

[ , ]
PRSW PRSW
c c . Initial conditions for compartmental volumes were 

generated from 
total
V  by setting them proportional to the unstressed volume of the 

respective compartment and ensuring that observations were taken only after the 

system had equilibrated.  
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Next, we allowed a third lumped parameter, arteriolar responsiveness, which 

linearly scales the arteriolar resistance range 
min max

[ , ]
art art
R R , to vary. We report the 

results of this scenario separately to illustrate the effects of higher dimensionality. Two 

types of prior distributions were examined: 

a) Parameters/initial conditions were assumed to come from independent 

Gaussian distributions, with means at the selected parameter values (scaling 

factor of 1) for contractility range (and for arteriolar responsiveness where 

applicable), and a total intravascular volume that corresponds to a level of 

sympathetic nervous activity S( ) 0.5t !  in steady state (Table III). Standard 

deviations were 0.5 for the scaling factors and 1000 ml for the total intravascular 

volume. All distributions were truncated at 0 by repeating the sampling if a 

negative value was drawn. 

b) Parameters/initial conditions were assumed to be distributed uniformly on the 

intervals ranging 2 standard deviations above and below the means described 

under a), again truncated at 0. 

3. RESULTS 

A. Cardiovascular system simulation 

Simulation experiments reveal that the model described by equations (14), (19), 

and (20) indeed exhibits the desired qualitatively correct behavior, both in its response 

to alterations in fluid load and contractility (Fig. 4) and in its blood pressure and heart 

rate responses, on medium to slow time scales, to dynamic challenges such as simulated 

volume loss (e.g. hemorrhage) and administration (e.g. fluid resuscitation, Fig. 5). 
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B. Simulated diagnostic process 

To illustrate the probabilistic diagnostic process, we implemented the inference 

procedure on the cardiovascular model for a set of simplified scenarios. We chose a 

Gaussian distribution, with varying standard deviation !  and mean 
true
y , for the 

measurement characteristic g( , )
true

y y . 

1. Single measurement 

When only one blood pressure measurement is made, the probable 

parameter/state range represents a continuum of various combinations of contractility 

and hydration status. As expected, the high precision measurement ( 10 mmHg! = ,Fig. 

6 and 7, Panel A) leads to more concentrated probability density functions than the low 

precision measurement ( 30 mmHg! = ,Fig. 5 and 6, Panel B), This is verified for 

informative (Gaussian, Fig. 6) and non-informative (uniform, Fig. 7) priors. Two peaks 

corresponding to the syndromes of “heart failure” (low contractility, normal-high total 

intravascular volume)  and “hypovolemia” (normal contractility, low intravascular 

volume) can be discerned when blood pressure is measured with high precision for both 

Gaussian and uniform priors (Fig. 6 and 7, Panel A2). When the measurement is less 

precise, the peak corresponding to “heart failure” is nearly absent with a Gaussian prior, 

but not with a uniform prior (Fig. 6 and 7, Panel B2). 

2. Measurement of response to perturbation 

To illustrate the additional diagnostic knowledge gained from perturbing the 

system, we simulated a fluid challenge [25]. Depending on the system’s response to the 

administration of 1,500 ml of fluid in the circulation, the updated posterior densities on 

parameter space are altered significantly (Fig. 6 and 7, Panels A3, A4, B3, B4). 

Specifically, the fluid challenge serves to differentiate between cardiac causes of 
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hypotension (“heart failure”, low contractility, low responsiveness to volume 

resuscitation, Fig. 6 and 7, Panel A3) and lack of intravascular volume as cause 

(“hypovolemia”, normal or high contractility, high responsiveness to volume 

resuscitation, Fig. 6 and 7, Panels A4) for the high precision measurement. With high 

precision measurements, the failure to restore blood pressure following a fluid challenge 

virtually eliminates hypovolemia as the cause of hypotension (Fig. 6 and 7, Panel A3), 

while low accuracy measurements yield an opposite prediction (Fig. 6 and 7, Panel B3), 

where the most likely cause of hypotension is hypovolemia.  

The clinician often wonders whether there is a preferred sequence of diagnostic 

challenges for ascertaining an accurate diagnosis. We explored this process in a limited 

fashion by evaluating the commutativity of interventions with respect to diagnostic 

value. The inference process itself is naturally commutative with respect to the sequence 

of assimilation of equivalent data (up to errors induced by numerical approximations). 

Yet, whether the sequence of dynamic interventions delivered to a physiological system 

for diagnostic or therapeutic purposes is commutative is less clear. We therefore 

considered the effect of administering two fluid volumes sequentially, either 500 ml then 

1000 ml or 1000 ml then 500 ml.  After each step, we assimilated blood pressure 

observations, taking the previous posteriors as the new priors, and we compared the 

final probability distributions obtained from the two different administration sequences. 

With parameter sets corresponding to hypovolemia, there was a high degree of 

commutativity as well as agreement with the posterior density obtained by assimilating 

a single observation made after a one-time, combined fluid challenge of 1500 ml.  In 

contrast, with parameters corresponding to “heart failure”, there were some differences 

in the relative weights of the peaks in the posterior densities obtained from the two 
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different administration sequences, although the qualitative diagnostic inferences 

implied by these peaks were the same (data not shown).  

3. The 3-dimensional setting 

When we allow 3 (lumped) parameters to vary, the structure of the posterior 

densities becomes much richer. The distributions become truly multimodal, and 

visualization and interpretation become more challenging. To illustrate this, we have 

recreated the scenarios from the 2-dimensional experiment. We depict two different 

visualizations of the grid points accounting for 95% of the total probability mass for the 

scenarios described earlier (Fig. 8, Panel A and C), as well as for a more ambiguous post-

resuscitation observation of 50 mmHg (Fig 8, Panel B). As can be seen, the assimilated 

observations are still sufficient to meaningfully constrain the probable region in 

parameter/state space. In both the low (30 mmHg post-resuscitation) and high response 

(70 mmHg post-resuscitation) scenarios, an additional probability concentration 

appears.  This additional probability mass corresponds to the possibility of shock 

induced by severely decreased peripheral resistance, which clinically corresponds to a 

failure of vasomotor tone as observed in septic, anaphylactic, or neurogenic shock states. 

For intermediate values of the post-resuscitation observation, the structure becomes 

even richer (Fig. 8, Panel B). 

 

4. DISCUSSION AND CONCLUSIONS 

A. Mathematical model of the cardiovascular system 

While a greatly simplified physiological representation, our mathematical model 

(14), (19), (20) of the cardiovascular system fulfills its design objectives: to be 

qualitatively correct in its response to variations in hydration status and myocardial 
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contractility while incorporating enough homeostatic mechanisms to make the 

identification of parameter values underlying observed states realistically ambiguous. 

The method used to convert the discrete dynamical system representing the sequential 

filling and emptying of the heart (and the resulting “history awareness” of the system) 

into a compact system of ordinary differential equations that preserves the physiologic 

meaning of parameters of the discrete system is, to our knowledge, novel. The model 

only includes mechanisms that have previously been recognized as important. 

Cardiovascular simulations achieving these requirements have typically involved either 

simulating intra-beat dynamics, which rapidly becomes computationally prohibitive, or 

resorting to a beat-to-beat discrete time representation (e.g., [26]). Our model is therefore 

particularly suited for simulation scenarios where an accurate description of intra-beat 

details is not required, yet a continuous form of inter-beat dynamics that preserves 

parameter meanings is desired.  

The inference process 

As illustrated by this proof-of-concept implementation, the proposed 

methodology clearly has the potential to integrate existing mechanistic knowledge and 

data generated by quantitative measurements in a clinical setting into a tool for 

assessing patient status. Our approach offers a means to achieve this integration in a 

way that not only incorporates all available data, but also quantifies the remaining 

uncertainty, thus avoiding unjustified claims of high certainty that could prove 

disastrous in a clinical setting. In particular, the clinical concept of differential diagnoses 

of different likelihoods is reflected in the observed multimodality of posterior 

probability distributions (Fig. 7, 8, and 9). 
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In effect, our approach maps clinical syndromes described by a set of 

observations to configurations of physiologically meaningful pre-observation states and 

parameters appearing within a mathematical model. Based on the physiological 

knowledge embodied in the model, certain regions in parameter and state space may in 

turn be associated with differential diagnoses, similar to the conditions of 

“hypovolemia”, “heart failure”, and “sepsis” in our simplified example. When this 

linkage is possible, the quantitative nature of the method presented here allows for the 

assignment and refinement of probability values to certain diagnoses. This, to our 

knowledge, is the first time that such a high level concept central to the clinical decision 

making is shown to emerge naturally from the combination of sequential observations, 

diagnostic challenges, and physiological principles. Independent of clinical applications, 

we believe that the methods presented herein open novel avenues of exploring 

theoretical aspects of clinical epistemology, independent of practical applications.  

Since measurement characteristics are described stochastically, the method we 

demonstrate is not fundamentally limited to assimilating data from device based 

quantitative measurements, but can also make use of rather qualitative clinical 

observations such as peripheral perfusion, lung rales or mental status, provided 

reasonably informative densities on system states or parameters conditional on such 

observations can be defined. Whether a combination of several subjective (or inaccurate) 

observations may exploit the physiological coupling of observables and yield 

informative posterior distributions corresponding, for example, to a carefully performed 

clinical examination, is a matter of current investigation.  

While modifying the order of physiological challenges did not have a tangible 

impact on diagnostic discrimination in our limited exploration, we anticipate that order 
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generally matters, as system response to a perturbation can be highly dependent on the 

system state at the time that the perturbation is delivered. That is, an initial diagnostic 

challenge will alter the state of the underlying system, which may impact its response to 

a subsequent challenge.  As an extreme example, a lethal and a non-lethal challenge 

clearly do not commute. Our approach could allow for a theoretical exploration of how 

to optimize the selection, and order, of diagnostic challenges for maximal information 

gain in the context of specific clinical scenarios. 

There must be congruence between the accuracy of observations and the level of 

information included in prior distributions. The inappropriate use of informative priors 

can be misleading in this context. The combination of the informative Gaussian priors 

with inaccurate observations effectively eliminates the physiologically reasonable “heart 

failure” peak in both the posteriors after a single observation of low blood pressure and 

the post-resuscitation posteriors for the low response case, while it is still clearly evident 

in the case of uniform priors (Fig. 6 and 7, Panels B2 and B3). This example illustrates 

that a conscious choice needs to be made as to whether an interpretation based on 

population level probabilities (corresponding to the use of informative priors) or an 

unbiased assessment of physiological possibilities (corresponding to the use of uniform 

priors) is more appropriate, when only few low quality measurements are available. 

Whether an optimal degree of incorporation of population-based information exists, and 

how such an optimum could be defined, are highly relevant issues that remain to be 

explored. 

B. Future Challenges 

There are core theoretical and methodological challenges in expanding the proposed 

approach to realistic settings. A common aspect of most of these challenges is the “curse 
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of dimensionality”, associated with the challenge of tackling high dimensional problems 

in a computationally tractable fashion. Specific sub-problems of immediate interest 

include the optimal inference of prior densities of parameters and system states from 

population level data [27], the estimation of posterior densities from prior densities 

given current observations, the propagation of resulting state densities using estimated 

parameters, the visualization and computer-aided interpretation of high-dimensional 

posteriors, the extension of this methodology towards optimization of diagnosis and 

therapy, perhaps using control theoretical approaches, and finally, the validation of the 

entire system, or workable subcomponents, according to the criteria of evidence-based 

medicine. Recent methodological developments in the areas of Markov Chain Monte 

Carlo methods and sparse grids, as well as the growth of computational power, may 

contribute to making many of these steps feasible for reasonably sized models and data 

sets in the near future, possibly even for real-time bedside use. 

C. Conclusion 

While none of the sub-components of the proposed methodology are entirely novel, 

we believe that this combined approach provides a conceptually new quantitative 

framework for a theoretical description of the medical decision making process, which 

may potentially be harnessed to improve this process. Eventually, this methodology 

could be extended to an outcome prediction tool, or to a method for the optimization of 

diagnostic and therapeutic interventions in individual patients. Its practical 

implementation will clearly require broad interdisciplinary collaborations due to the 

significant challenges involved. We nevertheless believe that the potential gains in 

diagnostic effectiveness and efficiency that can be made by taking a quantitative 
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approach to uncertainty, based on our ever-growing mechanistic knowledge, may make 

the effort worthwhile. 
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5. APPENDIX: PARAMETER 
ASSIGNMENT 

The parameters 0 2.03 mmHg
LV

P = , 
0

7.14 ml
ED
V = , and 

-1
0.066 ml

LVE
k = describing the ventricular pressure-volume relationship were estimated 

from the experimental data for  the left ventricle from [20] using the Levenberg-

Marquard non-linear least squares algorithm (Fig. 9).  

The remaining parameter values and ranges for variables, as well as the 

respective sources, are given in Table III (for meaning of parameters, see Table I).  When 

no explicit source is given, assignment was based on the authors’ perception of 

physiologically reasonable values for the simplified system, without claiming 

quantitative accuracy: 
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Table III. Parameter values for the model of the cardiovascular system  and their 

sources. 

Parameter/Variable Values(s) Source 

min max
,

PRSW PRSW
c c  34.5 – 138 erg/ml �   

25.9 – 103.8 mmHg 

50 – 200% of average 
control value from [20], 
table 1 

valve
R  0.0025 mmHg s/ml Atrial resistances from [28] 

min max
,HR HRf f  2/3 – 3  Hz Corresponding to 40 – 180 

bpm  

SysT  4/15 s 80% of duration of cardiac 
cycle at max. heart rate, 
[21], figure 4A 

min max
,

TPR TPR
R R  0.5335 – 2.134 mmHg s/ml 50%-200% of value used in 

[29] (1.067) 

0 0 0min max

,  ,
a v v
V V V  700 ml,  2700 – 3100 ml Adapted from [29] 

,   
a v
C C  4 ml/mmHg, 111 ml/mmHg [29] 

set
a
P  70 mmHg  

width
k  0.1838 mmHg-1 (corresponding to 99% 

saturation at 25 mmHg 
deviation from set point) 

Baro
!  20 s Time constant for control of 

unstressed venous volume 
from [28]  
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FIGURE LEGENDS 

 

FIG. 1. The forward and inverse problems.  Illustration of the role of a 

mechanistic mathematical model in linking measurements with abstract quantitative 

representations of the underlying physiological processes. Respective sources of 

stochasticity are indicated both for forward/predictive use of the model and 

inverse/inference type use. 

 

FIG. 2. Schematic of the simplified model of the cardiovascular system and its 

control. Blood is driven from the venous compartment with volume 
v
V  to the arterial 

compartment with volume 
a
V   by the monoventricular heart, which contracts from its 

end-diastolic volume 
ED
V  to its end-systolic volume 

ES
V . Reverse flow is prevented by a 

valve with resistance 
TPR
R . To complete the systemic circulation, flow from the arterial 

to the venous compartment has to overcome the total peripheral resistance 
TPR
R . 

Baroreflex senses pressure 
a
P  in the arterial compartment, and it processes the set point 

deviation through a sigmoidal nonlinearity and a linear element with low-pass 

characteristics, eventually affecting the actuators 
TPR
R , unstressed venous volume 

0v
V , 

heart rate HRf , and myocardial contractility 
PRSW
c . See text for details. 

 

FIG. 3. Transient behavior of continuous time cardiac model. Temporal 

evolution of actual stroke volume of continuous time system during initial transient of 

simulation shown in Fig. 5 (solid line) and stroke volume calculated from systolic and 

end-diastolic volumes that would occur if the discrete dynamical system was advanced 
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one step from the current values given by the continuous system (dashed). Note that the 

state of the continuous system rapidly approaches a fixed point of the discrete 

dynamical system, resulting in superposition of the two curves. The transient is caused 

by starting integration with a non-equilibrium distribution of fluid between arterial and 

venous compartments. 

 

FIG. 4. Starling curves. Steady state stroke volume with closed baroreflex 

feedback loop as a function of venous pressure for various contractility factors c that 

linearly scale the range of the baroreflex contractility effector branch 
min max

[ , ]
PRSW PRSW
c c . 

Simulations were performed by varying total intravascular volume between 3000 and 

8000 ml and plotting stroke volumes vs. venous pressures after 600 s of simulated time. 

 

FIG. 5. Simulation of fluid withdrawal and reinfusion. Fluid is drawn from or 

reinfused into the venous compartment at constant rate. Vertical lines indicate the 

beginning and end of withdrawal and reinfusion. 

 

FIG. 6. The diagnostic inference process, informative priors. (color online) 

Probability densities for high precision (standard deviation 10 mmHg, Panel A) and low 

precision (standard deviation 30 mmHg, Panel B) measurements of blood pressure for 

Gaussian prior densities. A/B1 show the assumed prior densities, A/B2 show the 

posterior densities resulting from a single arterial pressure measurement of 25 mmHg, 

A/B3 show the posterior densities if subsequent to the initial measurement, 1500 ml of 

fluid are applied intravenously resulting in a pressure measurement of 30 mmHg, while 
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A/B4 show the posterior densities if the measurement after fluid application is 70 

mmHg. 

 

FIG. 7. The diagnostic inference process, uniform priors. (color online) 

Probability densities for high precision (standard deviation 10 mmHg, Panel A) and low 

precision (standard deviation 30 mmHg, Panel B) measurements of blood pressure for 

uniform prior densities. The panel assignments are analogous to figure 6. Note that the 

axes are scaled differently due to the narrower support of the (compactly supported) 

priors used. 

 

FIG. 8. 3-Dimensional inference. (color online) Posterior probability densities for 

post-resuscitation observations of 30 mmHg (Panel A), 50 mmHg (Panel B), and 70 

mmHg (Panel C) mean arterial blood pressure. The left column depicts densities at grid-

points corresponding to 95% of the total probability mass, while the right column 

depicts the approximate surface enclosing this volume. The origin is in the far bottom 

corner for all figures. Shadows represent orthogonal projections to the contractility/total 

intravascular volume plane. 

 

FIG. 9. Endiastolic pressure-volume relationship. Least squares fit of the 

empirical exponential pressure-volume relationship  used to determine parameters from 

the experimental end-diastolic measurements from reference [20] , Fig 6, bottom right 

panel. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6. 
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Figure 7. 
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Figure 8. 
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Figure 9. 

 


