Linear Algebra Preliminary Exam August 2015

Problem 1 Let V be a finite dimensional vector space. Prove that every linearly independent set of V can be extended to a basis for V.

Problem 2 Let A, B, C be $n \times n$ matrices satisfying AB = BA. Show that

$$\det \left(A + BC\right) = \det \left(A + CB\right).$$

Problem 3 Prove that for any $n \times n$ complex matrix A,

 $\left|\operatorname{tr}\left(A^*A\right)\right| \le n \left\|A\right\|^2$

where tr (A^*A) is the trace of A^*A and ||A|| is the operator norm of A defined by

$$||A|| = \sup_{x \in \mathbb{C}^n, x \neq 0} \frac{|Ax|}{|x|}.$$

Problem 4 Let P_4 be the vector space of polynomials with real coefficients of orders at most 3. Consider the linear map

$$T: p(t) \mapsto p(t+1) - p(t).$$

a. Find all eigenvalues and corresponding eigenspaces of T.

b. Find the Jordan canonical form of T.

Problem 5 Let A(t) be a differentiable $n \times n$ matrix valued function. Is it always true that

$$\frac{d}{dt}A^{2}\left(t\right) = 2A\left(t\right)\frac{dA\left(t\right)}{dt}$$

Prove it or provide a counter example.

Problem 6 Prove that if A is an invertible $n \times n$ matrix with integer entries then A^{-1} has integer entries if and only if $det(A) = \pm 1$.