PRELIMINARY EXAM APRIL 2015

Problem 1. Define f : R> — R by
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0 if (z,y) = (0,0).
Show that f is differentiable at (0,0).
Problem 2. A graph of a mapping f : X — Y is defined as
Gr={(z,y) e X xY:y=f(2)}

Prove that if X is a metric space and Y is a compact metric space, then a map f : X — Y is
continuous if and only if G is a closed subset of X x Y.
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Problem 3. Prove that the series Z ﬁ
(n+x

(a) converges uniformly on [0,00) when o = 1,
(b) converges pointwise but not uniformly on [0, c0) when a = 2.

Problem 4. Find the distance between the two ellipsoids
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where a1 > ag > -+ > a, > 0.
Problem 5. Let @ : C*°(R") — R be a linear mapping such that Qf > 0 whenever f € C*°(R")
satisfies f(0) =0 and f(x) > 0 in a neighborhood of 0. Prove that there are real numbers a;;, b;
and ¢ such that
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Hint: Estimate the Taylor reminder.

Problem 6. Let D = {(x,y) € R?: 22 + y? < 1} and f € C*°(R?). Suppose that f(x,y) =1 for
all (z,y) € 0D. Prove that

// <2fﬂ: Y +:caf+ygf> dA = 2.



