PRELIMINARY EXAM MAY 2016

Problem 1. Prove that if a sequence (a_n) of real numbers converges to a finite $\lim_{n\to\infty} a_n = g$, then

$$\lim_{x \to \infty} e^{-x} \sum_{n=0}^{\infty} a_n \frac{x^n}{n!} = g.$$

Problem 2. Let $f: \mathbb{R} \to \mathbb{R}$ be a C^4 function such that for all $x, h \in \mathbb{R}$, we have

$$f(x+h) = f(x) + f'(x)h + \frac{1}{2}f''(x + \frac{1}{3}h)h^2.$$

Show that the fourth derivative $f^{(4)}(x) = 0$ for any $x \in \mathbb{R}$.

Problem 3. Let $f_n : \mathbb{R}^k \to \mathbb{R}^m$ be continuous maps (n = 1, 2, ...). Let K be a compact subset of \mathbb{R}^k . Suppose $f_n \rightrightarrows f$ uniformly on K. Prove that $S = f(K) \cup \bigcup_{n=1}^{\infty} f_n(K)$ is compact.

Problem 4. Let $D=\{(x,y)\mid x^2+y^2<1\}$ be the unit disk in \mathbb{R}^2 . Let $f,g\in C^2(D)$ be such that g is bounded on $D,\ f(x,y)\to +\infty$ as $x^2+y^2\to 1$, and moreover, $\Delta f=e^f$ and $\Delta g\geq e^g$ at all points of D. Here $\Delta=\frac{\partial^2}{\partial x^2}+\frac{\partial^2}{\partial y^2}$ is the Laplacian. Show that $f(x,y)\geq g(x,y)$ for any $(x,y)\in D$.

Problem 5. Let $F(x,y) = e^x y^3 + 2x^2 y^2 - y \cos x + 2 \sin x$, $(x,y) \in \mathbb{R}^2$. Prove that there exist functions $f,g,h \in C^{\infty}$ defined on an open neighborhood $U \subset \mathbb{R}$ of 0, such that F(x,f(x)) = F(x,g(x)) = F(x,h(x)) = 0 and f(x) < g(x) < h(x) for every $x \in U$. Find f'(0), g'(0) and h'(0).

Problem 6. Suppose that smooth functions $f_k: \mathbb{R}^k \to \mathbb{R}$ are defined for $k = 1, 2, \ldots 9$. Let $\Phi = (\phi_1, \ldots, \phi_{10}) : \mathbb{R}^{10} \to \mathbb{R}^{10}$ be a mapping defined by

$$\phi_1(x_1 \dots, x_{10}) = x_1
\phi_2(x_1 \dots, x_{10}) = 2x_2 + f_1(x_1)
\phi_3(x_1 \dots, x_{10}) = 3x_3 + f_2(x_1, x_2)
\dots
\phi_{10}(x_1 \dots, x_{10}) = 10 x_{10} + f_9(x_1 \dots, x_9).$$

- (1) Prove that Φ is a diffeomorphism of \mathbb{R}^{10} onto an open subset of \mathbb{R}^{10} .
- (2) Find the volume of $\Phi((-1,1)^{10})$.