PRELIMINARY EXAMINATION IN ANALYSIS AUGUST 19, 2016

Problem 1. Given $x_0 > 0$, define a sequence $\{x_n\}$ recursively by $x_n = 3(\sqrt{x_{n-1} + 1} - 1)$ for $n \in \mathbb{N}$. For any such x_0 , show that $\{x_n\}$ converges, and find its limit.

Problem 2. Prove that there is an increasing sequence of integers $a_1 < a_2 < a_3 < \dots$ such that for every $k \in \mathbb{N}$, the sequence $\{\sin(ka_n)\}_{n=1}^{\infty}$ converges.

Problem 3. For $n \geq 2$ define $f_n \colon [0,1] \to [0,1]$ by

$$f_n(x) = \begin{cases} nx & \text{if } 0 \le x \le \frac{1}{n} \\ \frac{n}{n-1}(1-x) & \text{if } \frac{1}{n} \le x \le 1 \end{cases}$$

Show that $\sum_{n=2}^{\infty} [f_n(x)]^n$ converges pointwise on [0, 1] to a function f(x) that is continuous on (0, 1], but that the improper integral $\int_0^1 f(x) dx$ diverges (the integral is improper at 0).

Problem 4. Let $f: A \to X$ be a mapping between a dense subset $A \subset \mathbb{R}^n$ and a complete metric space (X,d). Assume that $d(f(x),f(y)) \leq |x-y|$ for all $x,y \in A$.

- (a) Prove that there is a mapping $F: \mathbb{R}^n \to X$ such that $d(F(x), F(y)) \leq |x-y|$ for all $x, y \in \mathbb{R}^n$ and F(x) = f(x) whenever $x \in A$.
- (b) Provide an example showing that the claim in (a) is not true if we do not assume that the space (X, d) is complete.

Problem 5. Suppose f(x,y) is a C^2 function on \mathbb{R}^2 such that for some M>0 and all (x,y) in the closed unit disk $\mathbb{D}=\{(x,y)\,|\,x^2+y^2\leq 1\}$,

$$[f_{xx}(x,y)]^2 + 2[f_{xy}(x,y)]^2 + [f_{yy}(x,y)]^2 \le M.$$

If $f(0,0) = f_x(0,0) = f_y(0,0) = 0$, show that

$$\left| \iint_{\mathbb{D}} f(x,y) \ dx dy \right| \leq \frac{\pi \sqrt{M}}{4}$$

Problem 6. Let $\gamma: \mathbb{R} \to \mathbb{R}^n$ and $\mathbf{v}_i: \mathbb{R} \to \mathbb{R}^n$, i = 1, 2, ..., n-1, be C^{∞} smooth functions such that for any $t \in \mathbb{R}$ the vectors

$$\gamma'(t), \mathbf{v}_1(t), \ldots, \mathbf{v}_{n-1}(t)$$

form an orthonormal basis of \mathbb{R}^n (here we differentiate γ but do not differentiate $\mathbf{v}_i, i = 1, 2, \dots, n-1$).

Consider the mapping $\Phi: \mathbb{R}^n \to \mathbb{R}^n$ defined by

$$\Phi(x_1,\ldots,x_n)=\gamma(x_n)+\sum_{i=1}^{n-1}x_i\mathbf{v}_i(x_n).$$

- (a) Find the derivative $D\Phi(x_1,\ldots,x_n)$;
- (b) Prove that Φ is a diffeomorphism in a neighborhood of any point of the form $(0, \ldots, 0, x_n)$;
- (c) Find the limit

$$\lim_{r\to 0} \frac{|\Phi(B^n(0,r))|}{|B^n(0,r)|},\,$$

where $B^n(0,r)$ denotes the ball of radius r centered at the origin and |A| stands for the volume of the set A.