Geodesics in the Heisenberg Group \mathbb{H}^{n}

Scott Zimmerman
University of Pittsburgh
srz5@pitt.edu

April 10, 2015

Lie Group structure

The Heisenberg Group \mathbb{H}^{1} is $\mathbb{R}^{3}=\mathbb{C} \times \mathbb{R}$ with an additional Lie Group structure.
The Lie Group multiplication is defined for any $(z, t),\left(z^{\prime}, t^{\prime}\right) \in \mathbb{H}^{1}$ as

$$
(z, t) *\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{lm}\left(z \bar{z}^{\prime}\right)\right)
$$

and the Lie algebra \mathfrak{g} of \mathbb{H}^{1} has the basis of left invariant vector fields at any $p=(x, y, t)$

$$
X(p)=\frac{\partial}{\partial x}+2 y \frac{\partial}{\partial t} \quad Y(p)=\frac{\partial}{\partial y}-2 x \frac{\partial}{\partial t} \quad T(p)=\frac{\partial}{\partial t}
$$

We call $H \mathbb{H}^{1}=\operatorname{span}\{X, Y\}$ the horizontal distribution on \mathbb{H}^{1} and call $H_{p} \mathbb{H}^{1}$ the horizontal space at p.
We say that an absolutely continuous curve $\Gamma:[0, S] \rightarrow \mathbb{H}^{1}$ is horizontal if $\dot{\Gamma}(s) \in H_{\Gamma(s)} \mathbb{H}^{1}$ for almost every $s \in[0, S]$.

The horizontal distribution

The horizontal distribution

(All pictures and video created by Jake Mirra.)

Horizontal curves

In other words, an a.c. curve $\Gamma=(x, y, t):[0, S] \rightarrow \mathbb{H}^{1}$ is horizontal if and only if

$$
\dot{t}(s)=2(\dot{x}(s) y(s)-\dot{y}(s) x(s))
$$

for almost every $s \in[0, S]$.
From this we can conclude that

$$
t(S)-t(0)=2 \int_{0}^{S}(\dot{x}(s) y(s)-\dot{y}(s) x(s)) d s
$$

That is, if we are given a curve $\gamma=(x, y):[0, S] \rightarrow \mathbb{R}^{2}$, the horizontal curve $\Gamma=(x, y, t)$ is uniquely determined (up to its starting height $t(0))$. We call Γ the horizontal lift of γ.

Length and distance in \mathbb{H}^{1}

The length in \mathbb{H}^{1} of a horizontal curve Γ equals

$$
\ell_{H}(\Gamma)=\int_{0}^{S} \sqrt{\dot{x}(s)^{2}+\dot{y}(s)^{2}} d s=\ell_{E}(\gamma)
$$

where γ is its projection onto the first two coordinates.

Define the usual Carnot-Caratheodory metric $d_{c c}$ on \mathbb{H}^{1} so that $d_{c c}(p, q)$ equals

$$
\inf \left\{\ell_{H}(\Gamma) \mid \Gamma:[0, S] \rightarrow \mathbb{H}^{1} \text { is horizontal and } \Gamma(0)=p, \Gamma(S)=q\right\}
$$

Geodesics in \mathbb{H}^{1}

A geodesic between points $p, q \in \mathbb{H}^{1}$ is a horizontal curve of shortest length connecting p and q. What do geodesics look like in \mathbb{H}^{1} ?

Suppose $\Gamma=(\gamma, t)$ is a horizontal curve connecting the origin to a point $(0,0, T)$ on the t-axis. (For simplicity, assume its projection γ has no self intersections.) Recall the equation for the change T in the height of the curve:

$$
T=t(S)-t(0)=2 \int_{0}^{S}(\dot{x}(s) y(s)-\dot{y}(s) x(s)) d s
$$

By Green's theorem, $T=-4 A$ where A is the area enclosed by the closed curve γ.

Geodesics in \mathbb{H}^{1}

Recall also that $\ell_{H}(\Gamma)=\ell_{E}(\gamma)$. Hence, finding a geodesic connecting the origin to the point $(0,0, T)$ is equivalent to finding the shortest curve in \mathbb{R}^{2} which encloses a fixed area. (Since the horizontal lift of a curve in \mathbb{R}^{2} is unique.)

The isoperimetric inequality states that this curve must be a circle.

Theorem

A horizontal curve connecting the origin to the point $(0,0, T)$ in \mathbb{H}^{1} is a geodesic if an only if its projection onto its first two coordinates is a circle.

The Heisenberg Group \mathbb{H}^{n}

The Heisenberg Group \mathbb{H}^{n} is $\mathbb{R}^{2 n+1}=\mathbb{C}^{n} \times \mathbb{R}$ with an additional Lie Group structure.

The Lie Group multiplication is defined for any $(z, t),\left(z^{\prime}, t^{\prime}\right) \in \mathbb{H}^{n}$ as

$$
(z, t) *\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{lm}\left(z \cdot \bar{z}^{\prime}\right)\right)
$$

and the Lie algebra \mathfrak{g} of \mathbb{H}^{n} has the basis of left invariant vector fields at any $p=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right)$

$$
X_{j}(p)=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t} \quad Y_{j}(p)=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t} \quad T(p)=\frac{\partial}{\partial t}
$$

for any $j=1, \ldots, n$.
We call $H \mathbb{H}^{n}=\operatorname{span}\left\{X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\}$ the horizontal distribution on \mathbb{H}^{n} and call $H_{p} \mathbb{H}^{n}$ the horizontal space at p.

We say that an absolutely continuous curve $\Gamma:[0, S] \rightarrow \mathbb{H}^{n}$ is horizontal if $\dot{\Gamma}(s) \in H_{\Gamma(s)} \mathbb{H}^{n}$ for almost every $s \in[0, S]$.

Horizontal Curves in \mathbb{H}^{n}

In other words, an a.c. curve $\Gamma=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right):[0, S] \rightarrow \mathbb{H}^{n}$ is horizontal if and only if

$$
\dot{t}(s)=2 \sum_{j=1}^{n}\left(\dot{x}_{j}(s) y_{j}(s)-\dot{y}_{j}(s) x_{j}(s)\right)
$$

for almost every $s \in[0, S]$.
From this we can conclude that

$$
t(S)-t(0)=2 \sum_{j=1}^{n} \int_{0}^{S}\left(\dot{x}_{j}(s) y_{j}(s)-\dot{y}_{j}(s) x_{j}(s)\right) d s .
$$

That is, if we are given a curve $\gamma=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right):[0, S] \rightarrow \mathbb{R}^{2 n}$, the horizontal curve $\Gamma=\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}, t\right)$ is uniquely determined (up to its starting height $t(0)$). We call Γ the horizontal lift of γ.

Length and distance in \mathbb{H}^{n}

Similar to before, the length in \mathbb{H}^{n} of a horizontal curve Γ equals

$$
\ell_{H}(\Gamma)=\int_{0}^{S} \sqrt{\sum_{j=1}^{n}\left(\dot{x}_{j}(s)^{2}+\dot{y}_{j}(s)^{2}\right)} d s=\ell_{E}(\gamma)
$$

where γ is its projection onto the first $2 n$ coordinates.

Again define $d_{c c}$ on \mathbb{H}^{n} so that $d_{c c}(p, q)$ equals

$$
\inf \left\{\ell_{H}(\Gamma) \mid \Gamma:[0, S] \rightarrow \mathbb{H}^{n} \text { is horizontal and } \Gamma(0)=p, \Gamma(S)=q\right\}
$$

Geodesics in \mathbb{H}^{n}

Unfortunately, the argument that we used in \mathbb{H}^{1} to prove that geodesics must be the horizontal lifts of circles does not apply directly in \mathbb{H}^{n}. The isoperimetric inequality applies to curves in \mathbb{R}^{2} but not for curves in $\mathbb{R}^{2 n}$ when $n>1$.

However, there is a proof of the isoperimetric inequality by Adolf Hurwitz which uses Fourier series to compare the length of a curve and the area it encloses.

Geodesics in \mathbb{H}^{n}

The integral equation for the change in the height of a horizontal curve involves a pair of L^{2} inner products, and the equation for the length of a curve involves a pair of L^{2} norms. Thus we can apply Parseval's identity to compare these two equations to one another and find an inequality relating the length of a horizontal curve to the area it encloses. This inequality allows us to determine the shape of geodesics in \mathbb{H}^{n} as before.

Theorem

A horizontal curve connecting the origin to a point $(0, \ldots, 0, T)$ in \mathbb{H}^{n} is a geodesic if and only if the projection of the curve to each $x_{j} y_{j}$-plane is a circle with constant speed.

References

樯
Piotr Hajłasz, Scott Zimmerman (2015)
Geodesics in the Heisenberg Group \mathbb{H}^{n} by way of Fourier series. Submitted for publication.

The End

