Ph.D. PRELIMINARY EXAMINATION

PART I - LINEAR ALGEBRA

MAY 8, 2000

1. Answer at least 4 questions.

2. If you answer more the grade.	han 4 questions, the	best 4 out of 6 will be	e used to complete your
Use a soft lead (#2) pencil or a dark ink pen to record your answers on the answe sheets that have been provided.			
4. Put your code numb Confine your answers			-
CODE NUMBER:			
GRADE QUESTIONS:	1.	2	3
	4.	5	6.

Preliminary Examination Linear Algebra

IMPORTANT: While solving the problems below, please justify all your statements by either exhibiting a proof or properly quoting a relevant theorem."

1. Let A and B be real $n \times n$ matrices and let I be the $n \times n$ identity matrix. Prove that I - BA is invertible iff I - AB is invertible and then:

$$(I - BA)^{-1} = I + B(I - AB)^{-1}A.$$

Hence show that the matrices AB and BA have precisely the same characteristic values.

2. Let P_2 be the vector space of all polynomials f(x), with real coefficients, of degree at most two, in the variable x. Let a, b, c and d be given real numbers. We wish $f(x) \in P_2$ to have the following properties:

$$f(-1) = a$$
, $f(1) = b$, $f(3) = c$, $f(0) = d$.

Prove that f(x) exists iff 3a + 6b - c - 8d = 0.

- 3. Let A be a real symmetric $n \times n$ -matrix, that is positive definite, so $x^T A x > 0$ for all $x \neq 0$ in \mathbb{R}^n . Show that $A_{ii} A_{jj} A_{ij}^2 > 0$, for all i and j, with $1 \leq i < j \leq n$, where A_{pq} , for any p and q is the (p,q) entry of A.
- 4. Let P_3 be the vector space of all polynomials p(x), with real coefficients, of degree at most three, in the variable x. Define a map $T: P_3 \to P_3$ by the formula, valid for any $p(x) \in P_3$:

$$(Tp)(x) = \int_0^1 (x-y)^2 p(y) dy.$$

Prove that T is a linear transformation and find the matrix of T with respect to a standard basis for P_3 .

Find, with proof, bases for the range and the null space of T.

- 5. Let T be a linear operator on a real vector space V of finite dimension. Suppose that T has rank one. Prove that T is either diagonalizable or nilpotent, but not both.
- 6. Give, with proof, an example of a 2×2 -matrix A, such that A^2 is normal, but A is not normal.