PRELIMINARY EXAM QUESTIONS: LINEAR ALGEBRA

Winter '01-'02

Please solve six	problems	subject t	to the	constraints:	

- A. Problem 1 or Problem 2
- B. Problem 3
- C. Pick four from problems 4-8.

Please indicate which problems you want graded from the ones you chose!!

- **Problem 1:** Prove (from first principles) that to any linear functional y' on a finite dimensional inner product space V, there corresponds a unique vector y in V such that y'(x) = (x, y) for all x.
- **Problem 2:** Let f be a linear functional on a finite dimensional vector space, V over a field, F, *i.e.* $f: V \to F$.
 - A: Prove that if there is an $\alpha \in V$ such that $f(\alpha) \neq 0$ then every vector, $\beta \in V$ can be written as

$$\beta = c\alpha + \gamma$$
, where $f(\gamma) = 0$ $c \in F$.

- **B:** Let f, g be linear functionals on V and suppose that $f(\gamma) = 0$ implies that $g(\gamma) = 0$. Prove that g is a scalar multiple of f.
- **Problem 3:** True or false; if true, prove it and if false, provide a counterexample. Let $M_n(F)$ denote square matrices over the field F.
 - a: $A \in M_n(C)$ is orthogonal implies that it is unitary
 - b: All projections of finite-dimensional vector spaces are diagonalizable.
 - c: A is normal implies A^{-1} is normal when it exists
 - d: If the eigenvalues of A lie on the unit circle then A^n is bounded as $n \to \infty$.
 - e: The minimum polynomial of a real symmetric matrix is a product of distinct linear factors.

CODE 1	NUMBER:				
GRADE	QUESTIONS: 1		2	3.	
4.	5.	6.	7.	8.	

Problem 4: Let A be a real symmetric $n \times n$ matrix. Prove that $\vec{x}^T A \vec{x} > 0$ for all x if and only if all eigenvalues of A are positive.

Problem 5: Prove that the trace of a complex $n \times n$ matrix is the sum of its eigenvalues and that the determinant is the product of the eigenvalues.

Problem 6:

1

A: Let $A \in M_n(R)$ have a complex eigenvalue, $\alpha + i\beta$ with $\beta \neq 0$ and corresponding eigenvector, u + iv. Prove that u and v are linearly independent.

B: Suppose $A \in M_2(R)$ with eigenvalues, $\alpha \pm i\beta$ and eigenvectors, $(u \pm iv)$. Prove there is a matrix, P such that

$$P^{-1}AP = \left[\begin{array}{cc} \alpha & \beta \\ -\beta & \alpha \end{array} \right]$$

C: Find the corresponding matrix P for the matrix

$$A = \left[\begin{array}{cc} 1 & -4 \\ 2 & 5 \end{array} \right]$$

Problem 7: Let $A \in M_n(R)$ have nonegative elements such that the sum of all elements in each row is equal to one. Such a matrix is called a stochastic matrix. Prove the product of two stochastic matrices is a stochastic matrix. Prove that a matrix, A is stochastic if and only if Ae = e where e is the vector

$$e = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}$$

Problem 8: Consider the $n \times n$ matrix

$$A = \left[\begin{array}{cccc} x+y & x & \cdots & x \\ x & x+y & & \vdots \\ \vdots & & \ddots & x \\ x & x & \cdots & x+y \end{array} \right]$$

A: Prove that $det(A) = y^{n-1}(nx + y)$. (Hint: Add all columns to the first and then subtract the first row from the others.)

B: Prove that if A^{-1} exists, then it is the same form as A and derive a formula for it.