Linear Algebra Preliminary Exam
April 2013

Problem 1 Let A be a 4×4 real symmetric matrix. Suppose $A^3 + 3A = 0$ and rank $A = 2$, find $\text{tr} A$.

Problem 2 Suppose A and B are square complex matrices, such that AB is a projection. Is it true that BA is a projection? Prove or provide a counterexample.

Problem 3 Let A be a real symmetric positive definite matrix, show that

$$A + A^{-1} - 2I$$

is semi positive definite.

Problem 4 Let λ_i, $1 \leq i \leq m$ be m different eigenvalues of A, show that

$$n(m - 1) \leq \sum_{j=1}^{m} \text{rank} (\lambda_j - A).$$

Problem 5 Suppose A is a complex matrix satisfying $A^3 > 0$. Prove that A is diagonalizable.

Problem 6 Suppose A and B are normal complex $n \times n$ matrices. Prove that

$$sr(AB) \leq sr(A)sr(B).$$

Here $sr(\cdot)$ is the spectral radius of a matrix.