Linear Algebra Preliminary Exam April 2013

Problem 1 Let A be a 4×4 real symmetric matrix. Suppose $A^2 + 3A = 0$ and rank A = 2, find tr A.

Problem 2 Suppose A and B are square complex matrices, such that AB is a projection. Is it true that BA is a projection? Prove of provide a counterexample.

Problem 3 Let A be a real symmetric positive definite matrix, show that

$$A + A^{-1} - 2I$$

is semi positive definite.

Problem 4 Let λ_i , $1 \leq i \leq m$ be m different eigenvalues of A, show that

$$n(m-1) \leq \sum_{j=1}^{m} \operatorname{rank} (\lambda_{j} - A).$$

Problem 5 Suppose A is a complex matrix satisfying $A^2 > 0$. Prove that A is diagonalizable.

Problem 6 Suppose A and B are normal complex $n \times n$ matrices. Prove that

$$sr(AB) \le sr(A)sr(B)$$
.

Here $sr(\cdot)$ is the spectral radius of a matrix.