Linear Algebra Preliminary Examinations, August 2012

1. Let A be a complex square matrix. Suppose that rank (A) = tr(A) = 1. Prove that A is a projection.

2. Suppose A is a complex nilpotent 2×2 matrix, AB = -BA. Prove that either A = 0 or tr(B) = 0.

3. Let A be an invertible real symmetric matrix and B a real antisymmetric matrix such that AB = BA. Show that A + B is invertible.

4. Suppose A + B = C, where A, B and C are nilpotent matrices. Is it true that A and B commute? Prove or provide a counterexample.

5. Let $A = (a_{ij})_{n \times n}$ be a real symmetric matrix such that $a_{ii} = 0$ for all $1 \le i \le n$. Suppose that I + A is positive definite and λ is an eigenvalue of A. Prove that

$$-1 < \lambda < n - 1.$$

6. Suppose A is a complex matrix, such that $e^A = A$. Prove that A is diagonalizable.