Preliminary Exam

August 2006

1. Let ℓ_1 be the set of all infinite sequences $x = (x_1, x_2, \ldots, x_k, \ldots), x_k \in \mathbb{R}$, such that the series $\sum_{k=1}^{\infty} |x_k|$ converges. Let

$$d(x,y) = \sum_{k=1}^{\infty} |x_k - y_k|$$

define the distance between any two elements x and y in ℓ_1 .

- (a) Show that d(x, y) is well defined for any x, y in ℓ_1 and prove that (ℓ_1, d) is a metric space.
- (b) Prove that (ℓ_1, d) is complete.

2.

(a) Give sufficient conditions under which the series $\sum_{n=1}^{\infty} f_n(x)$ can be differentiated term by term on a bounded interval $I \subset \mathbb{R}$.

(b) Can we differentiate $\sum_{n=1}^{\infty} \arctan \frac{x}{n^2}$ term by term on \mathbb{R} ?

3. Let K be a compact metric space and let $C(K, \mathbb{R})$ denote the metric space of all continuous functions from K into \mathbb{R} with the supremum metric

$$d(f,g) = \sup\{|f(x) - g(x)| : x \in K\}.$$

Suppose $\mathcal{B} \subseteq C(K, \mathbb{R})$ is such that

- (i) if $f, g \in \mathcal{B}$ and $c \in \mathbb{R}$ then $f + g, cf, fg \in \mathcal{B}$;
- (ii) the constant function is in \mathcal{B} ;
- (iii) \mathcal{B} for all $x \neq y \in K$ there is an $f \in \mathcal{B}$ such that $f(x) \neq f(y)$.

Then the Stone-Weierstrass Approximation Theorem says that every $f \in C(K, \mathbb{R})$ is the uniform limit of a sequence in \mathcal{B} .

(a) Using the Stone-Weierstrass Approximation Theorem show that the set P of all two-variable polynomials is a dense set in $C([0,1] \times [0,1], \mathbb{R})$.

(b) Show that the set \mathcal{B} of all continuous functions $f : \mathbb{R} \to \mathbb{R}$ which are eventually constant (i.e. there are constants c and M so that f(x) = c for all $x \in \mathbb{R}$ such that $|x| \ge M$) satisfies conditions (i), (ii) and (iii) above, but the sine function, $s(x) = \sin(x)$, is not the uniform limit of elements of \mathcal{B} .

Why does this not contradict the Stone-Weierstrass Theorem?

4. Let U, V be open subsets of \mathbb{R}^n , $\mathbf{a} \in U$ and let $\mathbf{u} \in \mathbb{R}^n$ be a unit vector. Suppose $f : U \to V$ is a continuous bijection such that f and f^{-1} are differentiable.

- (a) Define the (total) derivative of f at **a**.
- (b) Define the directional derivative of f at \mathbf{a} in the direction \mathbf{u} .
- (c) The function $f : \mathbb{R}^2 \to (0, \infty)^2$ is given by

$$f(x,y) = (e^x + e^y, e^x + e^{-y}).$$

Calculate the directional derivative of f^{-1} at the point $(2e^c, 2\cosh c)$ in the direction $(1/\sqrt{2}, 1/\sqrt{2})$. State carefully any theorems that you use.

5. Suppose $\phi : [a, b] \to \mathbb{R}$ is differentiable and $f : \phi([a, b]) \to \mathbb{R}$ is continuous. Prove the Leibnitz rule:

$$\frac{d}{dx}\left[\int_{\phi(a)}^{\phi(x)} f(t) \, dt\right] = f(\phi(x))\phi'(x).$$

6. Compute

$$\iint_{S} z dx dy + (5x+y) dy dz,$$

where $S = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = z^2, 0 \le z \le 4\}$ with an outward normal.