LINEAR ALGEBRA PRELIMINARY EXAM, August, 2004

In the following, n, m are generic positive integers, \mathbb{F} a generic field, \mathbb{Q} the field of rational numbers. \mathbb{R} the field of real numbers, \mathbb{C} the field of complex numbers, $M_{m,n}(R)$ the set of all $m \times n$ matrices with entries in a ring R, $M_n(R) = M_{n,n}(R)$, I the identity matrix of appropriate rank, and I the identity map.

- 1. (10pts) Let $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$. Calculate A^{100} . (Hint: A = I + N where $N^2 = 0I$.)
- 2. (10pts) Find a linear change of variables from $(x,y) \in \mathbb{R}^2$ to (z,w) = (ax + by, cx + dy) such that for all $(x,y) \in \mathbb{R}^2$,

$$x^{2} + y^{2} = z^{2} + w^{2},$$
 $x^{2} + 2xy - 3y^{2} = \lambda z^{2} + \mu w^{2}$

where λ , μ are some real numbers.

3. (10pts) Suppose $A \in M_n(\mathbb{R}), B \in M_{n,m}(\mathbb{R}), C \in M_{m,n}(\mathbb{R}), D \in M_{m,m}(\mathbb{R})$, and the determinant $\det(A)$ of A is non-zero. Show that

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A)\det(D - CA^{-1}B).$$

(Hint: Multiply the matrix by an appropriate triangular matrix.).

4. (10pts) Let V be a vector space over a field $\mathbb F$ and $f,g:V\to\mathbb F$ be two linear functionals. Assume that

$$\{ \mathbf{x} \in V \mid f(\mathbf{x}) = 0 \} = \{ \mathbf{y} \in V \mid g(\mathbf{y}) = 0 \}.$$

Show that there exists a non-zero constant c such that f = cg.

- 5. (10 pts) Choose any one of the following two problems.
 - (a) Find integers a, b, c, d such that the following two matrices are similar over \mathbb{Q} :

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 0 & a \\ 1 & 0 & 0 & b \\ 0 & 1 & 0 & c \\ 0 & 0 & 1 & d \end{pmatrix}.$$

- (b) (10pts) Find a matrix, A, of integer entries such that $A \neq I$ and $A^3 = I$.
- 6. (10 pts) Choose any one of the following two problems.
 - (a) Let $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ and $T : M_2(\mathbb{C}) \to M_2(\mathbb{C})$ be defined by TB = AB + BA. Find a basis for the kernel ker(T) of T and a basis for the range R(T) of T.

(b) Let E_2 , a vector space over \mathbb{R} , be the set of all polynomials of real variable t, with real coefficients, and of degree ≤ 2 . Let $T: E_2 \to E_2$ be defined by

$$\mathrm{T} p(t) = t^2 p''(t) + t p'(0) + \int_0^1 p(s) \, ds \qquad \forall \, p \in E_2.$$

Find all the eigenvalues, including their multiplicity, of T.

- 7. (20 pts) Choose any one of the following two problems.
 - (a) Let $A \in M_n(\mathbb{R})$ be symmetric positive definite and $b \in \mathbb{R}^n$. Define

$$\phi(x) = x^T A x - 2b^T x \qquad \forall x \in \mathbb{R}^n.$$

Show that $z \in \mathbb{R}^n$ solves Az = b if and only if $\phi(z) \leq \phi(x)$ for all $x \in \mathbb{R}^n$.

- (b) Let C([0,1]) be the Euclidean space of all continuous functions defined on [0,1] equipped with the inner product $\langle p,q\rangle=\int_0^1 p(t)q(t)\,dt$. Let E_n be the Euclidean subspace consisting of all polynomials of real variable t, with real coefficients, and of degree $\leq n$ $(n\geq 1)$ an integer. Prove the following:
 - (i) $\forall f \in C([0,1])$, there is a unique $f_n \in E_n$ such that $\langle f, q \rangle = \langle f_n, q \rangle \quad \forall q \in E_n$;
 - (ii) the map $\mathbf{P}_n: f \in C([0,1]) \to f_n \in E_n$ is an orthogonal projection.
- 8. (20 pts) Choose any one of the following two problems.

You can use the fact that any linear map of a finite dimensional non-trivial vector space over $\mathbb C$ to itself admits at least an eigenpair.

(a) Let E be a finite dimensional Euclidean space over $\mathbb C$ and $\mathbf A:E\to E$ be a linear operator. Suppose that

$$\forall \lambda \in \mathbb{C}, \quad \ker(\lambda \mathbf{I} - \mathbf{A}) \perp R(\lambda \mathbf{I} - \mathbf{A}),$$

where ker and R denote the kernel and range respectively. Show that there is an orthonormal basis of E consisting of eigenvectors of A.

(b) Let V be a finite dimensional non-trivial vector space over \mathbb{C} and $\mathbf{A}_1, \dots, \mathbf{A}_m$ be linear operators from V to V. Assume that $\mathbf{A}_i \mathbf{A}_j = \mathbf{A}_j \mathbf{A}_i$ for all $i, j = 1, \dots, m$. Show that $\mathbf{A}_1, \dots, \mathbf{A}_m$ share at least one common eigenvector, i.e. there exists $\mathbf{x} \in V$. $\mathbf{x} \neq 0$, such that $\mathbf{A}_i \mathbf{x} = \lambda_i \mathbf{x}$ for all $i = 1, \dots, m$ where $\lambda_1, \dots, \lambda_m \in \mathbb{C}$.