Preliminary Exam in Analysis August 2003

Solve any 4 out of the 6 problems.

1. Let (x_n) be a sequence of real numbers. Define the sequence (y_n) by

$$y_n = \frac{1}{n} \sum_{j=1}^n x_j.$$

- (a) Prove that if (x_n) converges to $x \in R$, then (y_n) converges to x also.
- (b) Construct a nonconvergent sequence (x_n) such that (y_n) is convergent to some $x \in R$.
 - 2. Let $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ be a twice continuously differentiable function satisfying

$$f(0,y) = 0$$
, for all $y \in R$.

(a) Show that f(x,y)=xg(x,y) for all pairs $(x,y)\in R^2$, where g is the function given by

$$g(x,y) = \int_0^1 \frac{\partial f}{\partial x}(tx,y)dt.$$

(b) Show that g is continuously differentiable and that, for all $x \in R$,

$$g(0,y) = \frac{\partial f}{\partial x}(0,y), \ \ \tfrac{\partial g}{\partial y}(0,y) = \tfrac{\partial^2 f}{\partial x \partial y}(0,y).$$

- (c) Deduce from (a) and (b) that:
- If $\frac{\partial f}{\partial x}(0,0) \neq 0$, there is a neighborhood V of (0,0) in \mathbb{R}^2 such that $f^{-1}(0) \cap V = V \cap \{x=0\}$.
- If $\frac{\partial f}{\partial x}(0,0) = 0$, and $\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq 0$, there is a neighborhood V of (0,0) in \mathbb{R}^2 such that $f^{-1}(0) \cap V$ consists of the union of the set $V \cap \{x=0\}$ with a curve through (0,0) whose tangent at (0,0) is not vertical (that is, not parallel to the y-axis).
- **3.** Let $A \subseteq R^n$ be a set that is not compact. Show that there exists a sequence of closed sets $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_k \supseteq \cdots$ such that $F_j \cap A$ is nonempty for all j, and $(\cap_k F_k) \cap A$ is empty.

4. Let X denote the vector space of real-valued continuous functions on [0,1], and let $||\cdot||_{\infty}$ and $||\cdot||_{1}$ be two norms on X defined by

$$||x||_{\infty} = \max_{t \in [0,1]} |x(t)|, \ ||x||_{1} = \int_{0}^{1} |x(t)| dt.$$

- (a) Why are $||x||_{\infty}$ and $||x||_{1}$ well defined for every $x \in X$? (You are not asked to prove that they are norms, only to justify their definition.)
- (b) Show that if $(x_n) \subseteq X$ and there is $x \in X$ such that $\lim_{n\to\infty} ||x_n-x||_{\infty} = 0$, then $\lim_{n\to\infty} ||x_n-x||_1 = 0$. Provide a counterexample showing that the converse is not true.
- (c) For $k \in N$, let P_k denote the space of real polynomials of degree $\leq k$. Show that if $(x_n) \subseteq P_k$ and there is $x \in X$ such that $\lim_{n \to \infty} ||x_n x||_1 = 0$, then $x \in P_k$ and $\lim_{n \to \infty} ||x_n x||_{\infty} = 0$.
- 5. Let $f_n:[0,1]\to R$ be continuous functions such that $f_n\to f$ uniformly on [0,1]. Let $0< x_n\le 1$ be such that $x_n\to 1$.
 - (a) Show that $\int_0^{x_n} f_n(x) dx \to \int_0^1 f(x) dx$.
- (b) Is part (a) true if the convergence $f_n \to f$ is not uniform? If the answer is yes state the appropriate result, if the answer is no give a counterexample.
- **6.** Imagine the surface of the Earth as a sphere. Temperature on the surface of the Earth is a continuous function. Intersect the surface of the Earth with a plane such that the resulting curve is a circle C of positive radius. Prove that there exist two diametrically opposed points on C having the same temperature.