Linear Algebra Preliminary Examinations, April 2012

1. Let V be a finite dimensional vector space over a field F. Let $A, B: V \to V$ be two linear transformations. Prove that

 $\dim (\ker (AB)) \ge \max \{\dim (\ker A), \dim (\ker B)\}.$

2. Let A and B be two complex square matrices. Suppose AB - I is a projection. Is it true that BA - I is a projection? Prove or provide a counterexample.

3. Suppose A is a complex nilpotent 2×2 matrix, AB = -BA. Is it true that AB = 0? Prove or provide a counterexample.

4. Suppose λ_1 is an eigenvalue of a complex matrix $A_{n \times n}$ of algebraic multiplicity k. Show that the rank of $(A - \lambda_1 I)^k$ is n - k.

5. Suppose A and B are complex matrices, AB - BA is positive semi-definite. Prove that A and B have a common eigenvector.

6. Let A, B be two $n \times n$ positive definite matrices. Show that $\det(A + B) \ge \det(A) + \det(B)$.