Linear Algebra Preliminary Examination April 2010

Problem 1. Suppose A and B are $n \times n$ matrices and AB = 0. Prove that rank $A + \operatorname{rank} B \leq n$.

Problem 2.

Suppose that P and Q are $n \times n$ matrices such that $P^2 = P$, $Q^2 = Q$, and I - P - Q is invertible. Show that P and Q have the same rank.

Problem 3.

Suppose A and B are orthogonal projections in a finite-dimensional complex inner product space V. Suppose for some vector $x \in V$ we have ABx = x. Prove that Ax = Bx = x.

Problem 4.

Suppose A, B, and C are 2×2 matrices. Suppose AB = BA, AC = CA, and $BC \neq CB$. Prove that A is a scalar matrix.

Problem 5.

Let A and B be complex $n \times n$ matrices. Prove or disprove:

(a): If A and B are diagonalizable, so is AB.

(b): If $A^2 = A$, then A is diagonalizable.

(c): If A is invertible and A^2 is diagonalizable, then A is diagonalizable.

Problem 6.

Suppose A is a Hermitian matrix, and B is some matrix. Suppose $A^{3}B = BA^{3}$. Prove that AB = BA.