PRELIMINARY EXAM IN ANALYSIS

April 29, 2005

YOUR NAME (PLEASE PRINT): _____

NOTE: If you are taking the final, you need to do all of the problems in PART I only. If you are taking the analysis preliminary, you need to do all of the problems in both PART I and PART II.

PART I: THE FINAL

- 1. (10 pts) For a function $f : \mathbb{R}^n \to \mathbb{R}^n$, there exist a constant M > 0 and a constant $\alpha > 1$ such that, $||f(y) f(x)|| \le M ||y x||^{\alpha}$ for all $x, y \in \mathbb{R}^n$, show that f is differentiable on \mathbb{R}^n , Df(x) = 0 for every $x \in \mathbb{R}^n$, and f is constant on \mathbb{R}^n .
- 2. (10 pts) Suppose that a C^2 function $f : \mathbb{R}^n \to \mathbb{R}$ has a local minimum at x = 0and f(0) = 0. Prove that, for any $x \in \mathbb{R}^n$,

$$f(x) = \int_0^1 (1-t) \ x^\top D^2 f(tx) \ x \ dt,$$

where $x \in \mathbb{R}^n$ is a column vector and x^{\top} is the transpose of x.

- 3. (10 pts) If a function $f : [0, \infty) \to \mathbb{R}$ is nonnegative, integrable, and uniformly continuous, prove that $\lim_{x\to\infty} f(x) = 0$.
- 4. (10 pts) Suppose that a smooth function $f = (f_1, f_2) : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies the following property:

$$\frac{\partial f_1}{\partial x} = \frac{\partial f_2}{\partial y}, \quad \frac{\partial f_1}{\partial y} = -\frac{\partial f_2}{\partial x}.$$
 (1)

Prove that, if the Jacobian matrix $Df(x, y) \neq 0$, then f is locally invertible and the inverse function also satisfies property (1).

5. (10 pts) Evaluate the integral
$$\iint_{\mathbb{R}^2} e^{-x^2-y^2} dx dy$$
, and show that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$.

6. (10 pts) If $\Omega \subset \mathbb{R}^3$ is a bounded region with smooth boundary $\partial \Omega$, and **n** is the unit outward normal vector, then, for any two C^2 functions $u, v : \Omega \to \mathbb{R}$, prove the following identity:

$$\iiint_{\Omega} (u\Delta v - v\Delta u)dV = \iint_{\partial\Omega} (u\nabla v - v\nabla u) \cdot \mathbf{n} \, dS,$$

where $\Delta u(x, y, z) = u_{xx} + u_{yy} + u_{zz}$.

NAME: ____

PART II: THE EXTRA PROBLEMS FOR THE PRELIMINARY

- 7. (10 pts) Suppose that a differentiable function $f : \mathbb{R} \to \mathbb{R}$ and its derivative f' have no common zeros. Prove that f has only finitely many zeros in [0, 1].
- 8. (10 pts) Suppose that $f : [0, \infty) \to \mathbb{R}$ is continuous on $[0, \infty)$ and differentiable on $(0, \infty)$, f(0) = 0, and $\lim_{x \to \infty} f(x) = 0$. Prove that, there exists a point $c \in (0, \infty)$ such that f'(c) = 0.
- 9. (10 pts) Prove that the function defined by $f(x) = \sum_{n=0}^{\infty} \left(\frac{x^n}{n!}\right)^2$ is continuous on \mathbb{R} .
- 10. (10 pts) Prove that, if $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^1 f(x)x^n dx = 0$ for each integer $n \ge 0$, then $f \equiv 0$ on [0,1].