- 6. (10 points) Choose any one of the following two problems:
 - (a) Let V be a finite dimensional non-trivial vector space over $\mathbb C$ and $\mathbf A: V \to V$ be a linear operator. Show that there exists at least one eigenpair of $\mathbf A$, i.e., there exist $\mu \in \mathbb C$ and $\mathbf x \in V \setminus \{0\}$ such that $\mathbf A \mathbf x = \mu \mathbf x$.
 - (b) Let V be a finite dimensional vector space over $\mathbb C$ and $\mathbf A:V\to V$ be a linear operator satisfying

$$\ker(\lambda \mathbf{I} - \mathbf{A}) \cap \mathbb{R}(\lambda \mathbf{I} - \mathbf{A}) = \{\mathbf{0}\} \quad \forall \lambda \in \mathbb{C},$$

where ker stands for kernel and R for range. Show that there is a basis $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ of V such that each $\mathbf{v}_j, j = 1, \dots, n$, is an eigenvector of \mathbf{A} . (You can use the result from the previous problem (a).)

- 7. $(2 \times 20 \text{ pts})$ Choose any two of the following three problems.
 - (a) Let p(x) be the characteristic polynomial of A ∈ M_n(ℝ) and p(x) = p₁(x)p₂(x) where p₁ and p₂ are relatively prime polynomials with real coefficients. Show that

$$\mathbb{R}^n = \ker(p_1(A)) \oplus \ker(p_2(A))$$

where ker stands for the kernel.

- (b) Let $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$ for any continuous functions f,g defined on [0,1]. Let E_k be the Euclidean space of all polynomials of real variable t, with real coefficients, of degree $\leq k$, and equipped with the inner product $\langle \cdot, \cdot \rangle$. Let $\mathbf{P}_n : E_{n+1} \to E_n$ be the orthogonal projection from E_{n+1} to E_n and $\mathbf{A} : E_n \to E_{n+1}$ be defined by $\mathbf{A}p(t) = tp(t)$ for all $p \in E_n$. Show the following:
 - (i) $P_n A : E_n \to E_n$ is a self-adjoint operator on E_n .
 - (ii) $AP_n : E_{n+1} \to E_{n+1}$ is not a self-adjoint operator on E_{n+1} .
- (c) Let \mathbb{F} be a field and $A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in M_4(\mathbb{F})$. Prove the following:
 - (i) there exists $\xi \in \mathbb{F}^4$ such that $\{\xi, A\xi, A^2\xi, A^3\xi\}$ is a basis of \mathbb{F}^4 ;
 - (ii) $A^4\xi = \xi 2A^2\xi$ and $A^4 = I 2A^2$;
 - (iii) $B \in M_4(\mathbb{F})$ is a polynomial of A if and only if AB = BA.