The Math 2371 Final Examination consists of Exercises 1-6.

Students taking the preliminary examination should also work Exercise 7.

In the following, n is a generic positive integer, \mathbb{F} a generic field, \mathbb{R} the field of real numbers, \mathbb{C} the field of complex numbers, $\mathbf{i} = \sqrt{-1}$, $M_n(R)$ the set of all $n \times n$ matrices with entries in a ring R, I the identity matrix of appropriate rank, and \mathbf{I} the identity map.

- 1. (10pts) Let $A = \begin{pmatrix} x-1 & 1 \\ 0 & x-1 \end{pmatrix}$. Find invertible 2×2 matrices P, Q (whose entries are polynomials of x) such that PAQ is a diagonal matrix.
- 2. (10pts) Prove that for any $A, B \in M_n(\mathbb{F})$, AB and BA have the same set of eigenvalues.
- (10pts) Which of the following matrices is unitarity similar to a diagonal matrix? (You
 have to provide a reason such as "because the matrix is Hermitian" for your conclusion.)

$$\begin{pmatrix} 1 & \mathbf{i} \\ -\mathbf{i} & 0 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}.$$

4. (10pts) Let $A \in M_n(\mathbb{R})$ be symmetric positive definite, i.e. $A = A^T$ and $x^TAx > 0$ for all non-trivial $x \in \mathbb{R}^n$. Define $\langle x, y \rangle = x^TAy$ for all $x, y \in \mathbb{R}^n$. Directly prove the Cauchy–Schwarz inequality:

$$\langle x,y\rangle \leq \sqrt{\langle x,x\rangle}\sqrt{\langle y,y\rangle} \qquad \forall\, x,y\in\mathbb{R}^n.$$

- (10pts) Choose any one of the following two problems.
 - (a) Let E_3 , a vector space over \mathbb{R} , be the set of all polynomials of real coefficients and degree \leq 3. Define $\mathbf{T}: E_3 \to E_3$ by

$$\mathbf{T}p = p'' + 2p' + p \qquad \forall \, p \in E_3,$$

where $^\prime$ denotes differentiation. Find all the eigenvalues, including their multiplicity, of T.

(b) Let $A=\begin{pmatrix} 1 & 0 \\ 0 & 4 \end{pmatrix}$ and define $\mathbf{T}:M_2(\mathbb{C})\to M_2(\mathbb{C})$ by

$$TB = AB - BA \quad \forall B \in M_2(\mathbb{C}).$$

Find all the eigenvalues, including their multiplicity, of the linear operator T.