Analysis

Apric 2003

MATH 1540

Saturday, April 26, 2003

FINAL

The questions are independent: Not answering a question has no impact on your ability to answer any subsequent question. However, you may have to use the result of question # 1,..., i, to answer question # i+1 and you may or may not be told which previous question you should use.

Throughout the problem, $||\cdot||$ denotes the euclidian norm on \mathbb{R}^n and the "dot" notation is used for the euclidian inner product on \mathbb{R}^n .

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a C^2 function such that

$$D^2 f(x)(h,h) > 0, \quad \forall x \in \mathbb{R}^n, \quad \forall h \in \mathbb{R}^n \setminus \{0\}.$$
 (1)

- (i) Show that f(y) > f(x) + Df(x)(y-x) for every $x, y \in \mathbb{R}^n, y \neq x$.
- (ii) Deduce from (i) that Df(x) cannot vanish at more than one point x.

In (iii) and (iv) below, it is assumed that, in addition to (1),

$$\lim_{||x|| \to \infty} f(x) = \infty. \tag{2}$$

- (iii) Show that f is bounded from below and has at least one global minimum. (Consider a sequence $(x_k) \subset \mathbb{R}^n$ such that $f(x_k) \to \inf_{x \in \mathbb{R}^n} f(x)$.)
- (iv) Deduce from (ii) and (iii) that the equation $\nabla f(x) = 0$ has one and only one solution.
- (v) Given $z \in \mathbb{R}^n$, define $g(x) = f(x) z \cdot x$. Show that g is C^2 and that $D^2g(x)(h,h) > 0$ for all $x \in \mathbb{R}^n$ and all $h \in \mathbb{R}^n \setminus \{0\}$.

In (vi) and (vii) below, it is assumed that, in addition to (1),

$$\lim_{||x|| \to \infty} \frac{f(x)}{||x||} = \infty. \tag{3}$$

- (vi) Show that $\lim_{||x||\to\infty} g(x) = \infty$.
- (vii) Deduce from the above that, given $z \in \mathbb{R}^n$, the equation $\nabla f(x) = z$ has a unique solution $x \in \mathbb{R}^n$.

From now on, n=2 and f(=f(u,v)) is the function given by

$$f(u,v) = u^2 + \sin u \sin v + v^2.$$

- (viii) Find the Hessian matrix $H_f(u,v)$ of f and show that $\mathrm{Tr} H_f(u,v)>0$ and $\det H_f(u,v)\neq 0$ for every $(u,v)\in \mathbb{R}^2$, where Tr and \det denote the trace and determinant, respectively. Deduce from this that $H_f(u,v)h\cdot h>0$ for every $(u,v)\in \mathbb{R}^2$ and every $h\in \mathbb{R}^2\backslash\{0\}$.
 - (ix) Show that the system

$$\begin{cases} 2u + \cos u \sin v = b, \\ 2v + \sin u \cos v = c, \end{cases}$$

has a unique solution $(u, v) \in \mathbb{R}^2$ for every $(b, c) \in \mathbb{R}^2$.

PRELIM

One hour. Do two problems out of three.

- 1) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be differentiable.
- (a) Show that if Df(x) is not invertible for some $x \in \mathbb{R}^n$, there is a sequence $(x_k) \subset \mathbb{R}^n$ such that $\lim_{k \to \infty} x_k = x$ and $\lim_{k \to \infty} \frac{f(x_k) f(x)}{||x_k x||} = 0$. (Use the definition of differentiability and recall that a linear mapping on \mathbb{R}^n is invertible if and only if it is one to one.)
- (b) Let $x_0 \in \mathbb{R}^n$ be given and suppose that there are constants $\delta > 0$ and $M \geq 0$ such that $||f(x) f(x_0)|| \leq M||x x_0||$ whenever $||x x_0|| < \delta$. Show that $||Df(x_0)h|| \leq (M + \varepsilon)||h||$ for every $h \in \mathbb{R}^n$ and every $\varepsilon > 0$ and hence that $||Df(x_0)h|| \leq M||h||$ for every $h \in \mathbb{R}^n$.

Suppose now that there is a constant $\alpha > 0$ such that $||f(y) - f(x)|| \ge \alpha ||y - x||$ for every $x, y \in \mathbb{R}^n$.

- (c) Deduce from (a) that Df(x) is invertible for every $x \in \mathbb{R}^n$.
- (d) Show that, if f is C^1 , then $||Df(x)^{-1}h|| \leq \frac{1}{\alpha}||h||$ for every $h \in \mathbb{R}^n$ and every $x \in \mathbb{R}^n$. (Hint: By (c), $Df(x)^{-1}$ exists. Then, make *correct* use of (b) and of the inverse function theorem).
- 2) Let (M,d) be a compact metric space and let C(M) denote the set of real-valued continuous functions on M equipped with the distance $\rho(f,g) = \max_{x \in M} |f(x) g(x)|$. Let $x_* \in M$ be chosen once and for all.
 - (a) Show that the mapping $f \in C(M) \mapsto f(x_*) \in \mathbb{R}$ is continuous.
- (b) Show that $C_*(M) = \{ f \in C(M) : f(x_*) = 0 \}$ is an algebra and a closed subset of C(M). (Use (a).)
- (c) Let \mathcal{A} denote a subalgebra of $C_{\star}(M)$. Show that the set $\mathcal{B} = \{\psi = \varphi + c : \varphi \in \mathcal{A}, c \in \mathbb{R}\}$ is a subalgebra of C(M) and that \mathcal{A} separates the points of M if and only if \mathcal{B} separates the points of M.
 - (d) Deduce from (c) that if A separates the points of M, then A is dense in $C_*(M)$.
 - 3) Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be of class C^1 .
- (i) Show that if Df(x) is onto \mathbb{R}^m for every $x \in \mathbb{R}^n$, then $f(\mathbb{R}^n)$ is an open subset of \mathbb{R}^m .
- (ii) Show that if $f^{-1}(K)$ is a compact subset of \mathbb{R}^n whenever $K \subset \mathbb{R}^m$ is a compact subset, then $f(\mathbb{R}^n)$ is a closed subset of \mathbb{R}^m .
- (iii) Deduce from (i) and (ii) that if Df(x) is onto \mathbb{R}^m for every $x \in \mathbb{R}^n$ and if $\lim_{||x|| \to \infty} ||f(x)|| = \infty$, then f is onto \mathbb{R}^m .