The questions are independent: Not answering a question has no impact on your ability to answer any subsequent question. However, you may have to use the result of question \# 1,.., i, to answer question \# i+1 and you may or may not be told which previous question you should use.

Throughout the problem, ||·|| denotes the euclidian norm on \(\mathbb{R}^n \) and the "dot" notation is used for the euclidian inner product on \(\mathbb{R}^n \).

Let \(f : \mathbb{R}^n \to \mathbb{R} \) be a \(C^2 \) function such that

\[
D^2 f(x)(h, h) > 0, \quad \forall x \in \mathbb{R}^n, \quad \forall h \in \mathbb{R}^n \setminus \{0\}.
\]

(1)

(i) Show that \(f(y) > f(x) + Df(x)(y - x) \) for every \(x, y \in \mathbb{R}^n \), \(y \neq x \).

(ii) Deduce from (i) that \(Df(x) \) cannot vanish at more than one point \(x \).

In (iii) and (iv) below, it is assumed that, in addition to (1),

\[
\lim_{||x|| \to \infty} f(x) = \infty.
\]

(2)

(iii) Show that \(f \) is bounded from below and has at least one global minimum. (Consider a sequence \((x_k) \subset \mathbb{R}^n \) such that \(f(x_k) \to \inf_{x \in \mathbb{R}^n} f(x) \).

(iv) Deduce from (ii) and (iii) that the equation \(\nabla f(x) = 0 \) has one and only one solution.

(v) Given \(z \in \mathbb{R}^n \), define \(g(x) = f(x) - z \cdot x \). Show that \(g \) is \(C^2 \) and that \(D^2 g(x)(h, h) > 0 \) for all \(x \in \mathbb{R}^n \) and all \(h \in \mathbb{R}^n \setminus \{0\} \).

In (vi) and (vii) below, it is assumed that, in addition to (1),

\[
\lim_{||x|| \to \infty} \frac{f(x)}{||x||} = \infty.
\]

(3)
(vi) Show that \(\lim_{||x|| \to \infty} g(x) = \infty \).

(vii) Deduce from the above that, given \(z \in \mathbb{R}^n \), the equation \(\nabla f(x) = z \) has a unique solution \(x \in \mathbb{R}^n \).

From now on, \(n = 2 \) and \(f(= f(u,v)) \) is the function given by

\[
f(u,v) = u^2 + \sin u \sin v + v^2.
\]

(viii) Find the Hessian matrix \(H_f(u,v) \) of \(f \) and show that \(\text{Tr} H_f(u,v) > 0 \) and \(\det H_f(u,v) \neq 0 \) for every \((u,v) \in \mathbb{R}^2 \), where \(\text{Tr} \) and \(\det \) denote the trace and determinant, respectively. Deduce from this that \(H_f(u,v) h \cdot h > 0 \) for every \((u,v) \in \mathbb{R}^2 \) and every \(h \in \mathbb{R}^2 \setminus \{0\} \).

(ix) Show that the system

\[
\begin{cases}
2u + \cos u \sin v = b, \\
2v + \sin u \cos v = c,
\end{cases}
\]

has a unique solution \((u,v) \in \mathbb{R}^2 \) for every \((b,c) \in \mathbb{R}^2 \).
PRELIM

One hour. Do two problems out of three.

1) Let \(f : \mathbb{R}^n \to \mathbb{R}^n \) be differentiable.
 (a) Show that if \(Df(x) \) is not invertible for some \(x \in \mathbb{R}^n \), there is a sequence \((x_k) \subset \mathbb{R}^n \) such that \(\lim_{k \to \infty} x_k = x \) and \(\lim_{k \to \infty} \frac{f(x_k) - f(x)}{||x_k - x||} = 0 \). (Use the definition of differentiability and recall that a linear mapping on \(\mathbb{R}^n \) is invertible if and only if it is one to one.)
 (b) Let \(x_0 \in \mathbb{R}^n \) be given and suppose that there are constants \(\delta > 0 \) and \(M \geq 0 \) such that \(||f(x) - f(x_0)|| \leq M||x - x_0|| \) whenever \(||x - x_0|| < \delta \). Show that \(||Df(x_0)h|| \leq (M + \varepsilon)||h|| \) for every \(h \in \mathbb{R}^n \) and every \(\varepsilon > 0 \) and hence that \(||Df(x_0)h|| \leq M||h|| \) for every \(h \in \mathbb{R}^n \).
 Suppose now that there is a constant \(\alpha > 0 \) such that \(||f(y) - f(x)|| \geq \alpha||y - x|| \) for every \(x, y \in \mathbb{R}^n \).
 (c) Deduce from (a) that \(Df(x) \) is invertible for every \(x \in \mathbb{R}^n \).
 (d) Show that, if \(f \) is \(C^1 \), then \(||Df(x)^{-1}h|| \leq \frac{1}{\alpha}||h|| \) for every \(h \in \mathbb{R}^n \) and every \(x \in \mathbb{R}^n \). (Hint: By (c), \(Df(x)^{-1} \) exists. Then, make correct use of (b) and of the inverse function theorem.)

2) Let \((M, d)\) be a compact metric space and let \(C(M) \) denote the set of real-valued continuous functions on \(M \) equipped with the distance \(\rho(f, g) = \max_{x \in M} |f(x) - g(x)| \).
 Let \(x_* \in M \) be chosen once and for all.
 (a) Show that the mapping \(f \in C(M) \mapsto f(x_*) \in \mathbb{R} \) is continuous.
 (b) Show that \(C_*(M) = \{ f \in C(M) : f(x_*) = 0 \} \) is an algebra and a closed subset of \(C(M) \). (Use (a).)
 (c) Let \(\mathcal{A} \) denote a subalgebra of \(C_*(M) \). Show that the set \(\mathcal{B} = \{ \psi = \varphi + c : \varphi \in \mathcal{A}, c \in \mathbb{R} \} \) is a subalgebra of \(C(M) \) and that \(\mathcal{A} \) separates the points of \(M \) if and only if \(\mathcal{B} \) separates the points of \(M \).
 (d) Deduce from (c) that if \(\mathcal{A} \) separates the points of \(M \), then \(\mathcal{A} \) is dense in \(C_*(M) \).

3) Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be of class \(C^1 \).
 (i) Show that if \(Df(x) \) is onto \(\mathbb{R}^m \) for every \(x \in \mathbb{R}^n \), then \(f(\mathbb{R}^n) \) is an open subset of \(\mathbb{R}^m \).
 (ii) Show that if \(f^{-1}(K) \) is a compact subset of \(\mathbb{R}^n \) whenever \(K \subset \mathbb{R}^m \) is a compact subset, then \(f(\mathbb{R}^n) \) is a closed subset of \(\mathbb{R}^m \).
 (iii) Deduce from (i) and (ii) that if \(Df(x) \) is onto \(\mathbb{R}^m \) for every \(x \in \mathbb{R}^n \) and if \(\lim_{||x|| \to \infty} ||f(x)|| = \infty \), then \(f \) is onto \(\mathbb{R}^m \).