Preliminary Exam in Analysis, January 6, 2024

Problem 1. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at $x=0$ and satisfies

$$
\lim _{x \rightarrow 0} \frac{f(3 x)-f(x)}{x}=\lambda,
$$

where $\lambda \in \mathbb{R}$. Prove that f is differentiable at 0 and find $f^{\prime}(0)$.
Hint: Consider the points $3^{-n} x$.
Problem 2. Suppose that a sequence of continuous functions $f_{n}:[-1,1] \rightarrow \mathbb{R}$ satisfies:
(1) $f_{n}(x) \geq 0$ for $x \in[-1,1]$ and $\int_{-1}^{1} f_{n}(x) d x=1$;
(2) for any $c \in(0,1),\left\{f_{n}\right\}$ converges uniformly to 0 on $[-1,-c] \cup[c, 1]$.

Prove that for any continuous function $g \in C([-1,1])$,

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} g(x) f_{n}(x) d x=g(0)
$$

Problem 3. Suppose that $F: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous and $M>0$ is a constant. Prove that if for every $x \in \mathbb{R}^{n}$ there is a unique $y=y(x) \in \mathbb{R}^{m}$ such that

$$
|y(x)| \leq M \quad \text { and } \quad F(x, y(x))=0
$$

then the function $\mathbb{R}^{n} \ni x \mapsto y(x) \in \mathbb{R}^{m}$ is continuous.
Problem 4. Let $f: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a function whose partial derivatives of order ≤ 3 are everywhere defined and continuous. Let $\alpha=(1, \ldots, 1) \in \mathbb{R}^{m}$ and let $\mathbf{0}$ denote the origin in \mathbb{R}^{m}. Prove that

$$
\sum_{n=1}^{\infty}\left[n f\left(\frac{\alpha}{n}\right)-n f\left(-\frac{\alpha}{n}\right)-2\left(\sum_{j=1}^{m} \frac{\partial f(\mathbf{0})}{\partial x_{j}}\right)\right]
$$

is a convergent series.
Problem 5. Let $f \in C^{1}(\mathbb{R})$ be a continuously differentiable function such that $\left|f^{\prime}(x)\right| \leq 1 / 2$ for all $x \in \mathbb{R}$. Define $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
g(x, y)=(x+f(y), y+f(x)) .
$$

Prove that
(1) g is a diffeomorphism,
(2) $g\left(\mathbb{R}^{2}\right)=\mathbb{R}^{2}$,
(3) the area $\left|g\left([0,1]^{2}\right)\right|$ of the image of the unit square belongs to the interval $[3 / 4,5 / 4]$.

Hint: Among other tools use the contraction principle.
Problem 6. Let \mathbf{F} be a vector field in $U=\left\{x \in \mathbb{R}^{3}: 1<|x|<2\right\}$, where $|x|$ is the Euclidean norm. Assume that there is a continuous function $f:(1,2) \rightarrow \mathbb{R}$ such that

$$
\mathbf{F}=f(|x|) x \quad \text { for all } x \in U .
$$

Prove that if γ is a smooth closed curve in U, then

$$
\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}=0
$$

