Linear Algebra Preliminary Exam

January 7, 2024

1. Let A be an $n \times n$ complex matrix. Show that

$$\operatorname{rank} A + \operatorname{rank}(I - A) = n$$

if and only if $A^2 = A$.

2. Let $n \geq 2$ and P_n denote the vector space of complex polynomials p(x) of degree less than n. Given $a = (a_1, \dots, a_n)^T \in \mathbb{C}^n$, $T_a : P_n \to \mathbb{C}^n$ is the linear transformation defined by

$$T_a(p) = (p(a_1), p(a_2), \cdots, p(a_n))^T \in \mathbb{C}^n$$

for any $p \in P_n$. Under the basis $\{1, x, \dots, x^{n-1}\}$ of P_n and the standard basis of \mathbb{C}^n , T_a is represented by an $n \times n$ complex matrix

$$T:\mathbb{C}^n\to\mathbb{C}^n$$
.

- (a) Find the entries T_{ij} of matrix T.
- (b) Compute $\det T$ in terms of the a_1, \dots, a_n .
- 3. Let X be the set of all $n \times n$ complex matrices and $A \in X$ be diagonalizable. Define $T_A: X \to X$ so that

$$T_A(B) = AB$$
.

Show that T_A is also diagonalizable.

4. Let $A_i: \mathbb{C}^n \to \mathbb{C}^n$, $1 \leq i \leq k$ be k orthogonal projections satisfying for any $x \in \mathbb{C}^n$,

$$\sum_{i=1}^{k} \|A_i x\|^2 = \|x\|^2.$$

Show that

$$\sum_{i=1}^{k} A_i = I.$$

- 5. Let A be an $n \times n$ complex matrix preserving the orthogonal properties in \mathbb{C}^n , i.e., for any $x, y \in \mathbb{C}^n$, (x, y) = 0 if and only if (Ax, Ay) = 0. Show that A = kU where k is a nonnegative number and U is a unitary matrix.
- 6. Let A, B be two $n \times n$ positive definite matrices. Show that

$$\det(A+B) \ge \det A + \det B$$
.

(Hint: Prove first the special case when A = I.)