# Linear Algebra Preliminary Exam 

January 7, 2024

1. Let $A$ be an $n \times n$ complex matrix. Show that

$$
\operatorname{rank} A+\operatorname{rank}(I-A)=n
$$

if and only if $A^{2}=A$.
2. Let $n \geq 2$ and $P_{n}$ denote the vector space of complex polynomials $p(x)$ of degree less than $n$. Given $a=\left(a_{1}, \cdots, a_{n}\right)^{T} \in \mathbb{C}^{n}, T_{a}: P_{n} \rightarrow \mathbb{C}^{n}$ is the linear transformation defined by

$$
T_{a}(p)=\left(p\left(a_{1}\right), p\left(a_{2}\right), \cdots, p\left(a_{n}\right)\right)^{T} \in \mathbb{C}^{n}
$$

for any $p \in P_{n}$. Under the basis $\left\{1, x, \cdots, x^{n-1}\right\}$ of $P_{n}$ and the standard basis of $\mathbb{C}^{n}, T_{a}$ is represented by an $n \times n$ complex matrix

$$
T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}
$$

(a) Find the entries $T_{i j}$ of matrix $T$.
(b) Compute $\operatorname{det} T$ in terms of the $a_{1}, \cdots, a_{n}$.
3. Let $X$ be the set of all $n \times n$ complex matrices and $A \in X$ be diagonalizable. Define $T_{A}: X \rightarrow X$ so that

$$
T_{A}(B)=A B
$$

Show that $T_{A}$ is also diagonalizable.
4. Let $A_{i}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}, 1 \leq i \leq k$ be $k$ orthogonal projections satisfying for any $x \in \mathbb{C}^{n}$,

$$
\sum_{i=1}^{k}\left\|A_{i} x\right\|^{2}=\|x\|^{2}
$$

Show that

$$
\sum_{i=1}^{k} A_{i}=I
$$

5. Let $A$ be an $n \times n$ complex matrix preserving the orthogonal properties in $\mathbb{C}^{n}$, i.e., for any $x, y \in \mathbb{C}^{n},(x, y)=0$ if and only if $(A x, A y)=0$. Show that $A=k U$ where $k$ is a nonnegative number and $U$ is a unitary matrix.

6 . Let $A, B$ be two $n \times n$ positive definite matrices. Show that

$$
\operatorname{det}(A+B) \geq \operatorname{det} A+\operatorname{det} B
$$

(Hint: Prove first the special case when $A=I$.)

