Linear Algebra Preliminary Exam

August 23, 2023

1. Let λ_{1}, λ_{2} be two distinct eigenvalues of a complex square matrix A. Suppose that u is an eigenvector of A w.r.t. λ_{1} and v is a generalized eigenvector of A^{*} w.r.t. $\overline{\lambda_{2}}$. Show that u, v are perpendicular to each other.
2. Let A be a 2×2 complex matrix. Show that the linear map

$$
B \longmapsto A B+B A
$$

is a bijection if and only if both $\operatorname{tr} A$ and $\operatorname{det} A$ are nonzero.
3. Let A be an $n \times n$ real positive definite matrix, $x \in \mathbb{R}^{n}$ be a nonzero real column vector, show that the determinant of the $(n+1) \times(n+1)$ matrix

$$
B=\left(\begin{array}{cc}
A & x \\
x^{T} & 0
\end{array}\right)
$$

is negative.
4. Suppose A is an $n \times n$ complex matrix with only one Jordan block. Let B be an $n \times n$ matrix that commutes with A. Show that $B=f(A)$ for a polynomial f with complex coefficients.
5. Suppose $\left\{A_{j}\right\}_{j=1}^{n+1}$ are pairwise commuting $n \times n$ complex matrices. Suppose $A_{1} A_{2} \cdots A_{n+1}=0$, show that in the above expression at least one of the factors can be removed with the expression still being zero.
6. Suppose two complex square matrices A, B satisfy $\|A-B\|=\|A\|-\|B\|$. Show that $A^{*} A$ and $B^{*} B$ share at least one eigenvector. Here $\|\cdot\|$ is the standard operator norm.

