Linear Algebra Preliminary Exam August 23, 2023

- 1. Let λ_1, λ_2 be two distinct eigenvalues of a complex square matrix A. Suppose that u is an eigenvector of A w.r.t. λ_1 and v is a generalized eigenvector of A^* w.r.t. $\overline{\lambda_2}$. Show that u, v are perpendicular to each other.
- 2. Let A be a 2×2 complex matrix. Show that the linear map

$$B \longmapsto AB + BA$$

is a bijection if and only if both $\operatorname{tr} A$ and $\det A$ are nonzero.

3. Let A be an $n \times n$ real positive definite matrix, $x \in \mathbb{R}^n$ be a nonzero real column vector, show that the determinant of the $(n+1) \times (n+1)$ matrix

$$B = \left(\begin{array}{cc} A & x \\ x^T & 0 \end{array}\right)$$

is negative.

- 4. Suppose A is an $n \times n$ complex matrix with only one Jordan block. Let B be an $n \times n$ matrix that commutes with A. Show that B = f(A) for a polynomial f with complex coefficients.
- 5. Suppose $\{A_j\}_{j=1}^{n+1}$ are pairwise commuting $n \times n$ complex matrices. Suppose $A_1 A_2 \cdots A_{n+1} = 0$, show that in the above expression at least one of the factors can be removed with the expression still being zero.
- 6. Suppose two complex square matrices A, B satisfy ||A B|| = ||A|| ||B||. Show that A^*A and B^*B share at least one eigenvector. Here $|| \cdot ||$ is the standard operator norm.