Preliminary Exam in Analysis, August 2023

Problem 1.

Let $E \subset \mathbb{R}^{n}$ be an open set and let $f: E \rightarrow \mathbb{R}$ be a C^{1} function. Let $c \in E$ be such that $f(c)=0$. Suppose that $d f(c) \neq 0$. Use the Inverse Function Theorem to prove that there is an open set $U \subset \mathbb{R}^{n}$, an open set $V \ni c$, and a C^{1} function $h: U \rightarrow V$ with a C^{1} inverse $h^{-1}: V \rightarrow U$, such that

$$
f\left(h\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=x_{n} .
$$

Problem 2.

Let $f \in C^{\infty}((-a, a))$ for some $a>0$. Suppose that $f(0)=0$ and $0<f^{\prime}(0)<1$. Let

$$
f_{1}(x)=f(x), \quad f_{2}(x)=f(f(x)), \quad \ldots, \quad f_{n}(x)=f\left(f_{n-1}(x)\right), \quad \ldots .
$$

Prove that there exists $0<\alpha \leq a$ such that $\sum_{n=1}^{\infty} f_{n}(x)$ converges uniformly in $[-\alpha, \alpha]$.

Problem 3

For all $\alpha \in A$ let $x_{\alpha} \in \mathbb{R}, x_{\alpha} \geq 0$. Define

$$
\sum_{\alpha \in A} x_{\alpha}=\sup \left\{\sum_{\alpha \in B} x_{\alpha}: B \subset A, B \text { finite }\right\},
$$

which is finite when the set of finite sums $\left\{\sum_{\alpha \in B} x_{\alpha}: B \subset A, B\right.$ finite $\}$ is bounded. Prove that in this case, there exist a countable subset $C \subset A$ such that $x_{\alpha}=0$ when $\alpha \notin C$ and

$$
\sum_{\alpha \in A} x_{\alpha}=\sum_{\alpha \in C} x_{\alpha} .
$$

Problem 4

Given a positive integer n, prove that there is $\varepsilon>0$ such that for every $n \times n$ matrix A with $|A|<\varepsilon$, there is an $n \times n$ matrix B satisfying $B^{2}=A+B$. Here $|\cdot|$ can be any matrix norm. For example, if $A=\left[a_{i j}\right]_{i, j=1}^{n}$, one can take $|A|=\left(\sum a_{i j}^{2}\right)^{1 / 2}$.

Problem 5.

Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a continuous mapping and let $E \subset \mathbb{R}^{n}$ be a compact set. Assume that

1. $\left.\Phi\right|_{E}: E \rightarrow \mathbb{R}^{n}$ is one-to-one.
2. For every $x \in E$, there is $r_{x}>0$ such that $\left.\Phi\right|_{B^{n}\left(x, r_{x}\right)}: B^{n}\left(x, r_{x}\right) \rightarrow \mathbb{R}^{n}$ is one-to-one.

Prove that there is an open set $U \subset \mathbb{R}^{n}$ such that $E \subset U$ and $\left.\Phi\right|_{U}: U \rightarrow \mathbb{R}^{n}$ is one-to-one.

Problem 6

Let $f: \mathbb{R}^{3} \mapsto \mathbb{R}^{3}$ be one-to-one and of class C^{1}. Let $J(x)=\operatorname{det} D f(x)$ be its Jacobian determinant. For $x_{0} \in \mathbb{R}^{3}$ let us denote by $Q_{r}\left(x_{0}\right)$ the cube centered at x_{0} with side length r and edges parallels to the coordinate axes. Prove that

$$
\left|J\left(x_{0}\right)\right|=\lim _{r \rightarrow 0^{+}} \frac{\operatorname{vol}\left(f\left(Q_{r}\left(x_{0}\right)\right)\right)}{r^{3}} \leq \limsup _{x \rightarrow x_{0}} \frac{\left\|f(x)-f\left(x_{0}\right)\right\|^{3}}{\left\|x-x_{0}\right\|^{3}} .
$$

Here $\|x\|=\sqrt{\sum_{i=1}^{3} x_{i}^{2}}$ is the Euclidean norm in \mathbb{R}^{3}.

