Linear Algebra Preliminary Exam April 2014

Problem 1 (12 points) Let X be a finite dimensional linear space and $T \in L(X, X)$. Suppose

$$\dim\left(R_{T^2}\right) = \dim\left(R_T\right),\,$$

show that

$$R_T \cap N_T = \{0\}.$$

Here R_T is the range of T and N_T is the null space of T.

Problem 2 (12 points) Let

$$A = \left(\begin{array}{rrrr} 0 & 1 & -1 \\ -1 & 0 & -2 \\ 1 & 2 & 0 \end{array}\right).$$

Calculate

 A^{2014} .

Problem 3 (12 points) Let A, B be $n \times n$ complex matrices and A > 0. If there exists a $k \in \mathbb{N}$ such that $A^k B = BA^k$, prove that AB = BA.

Problem 4 (12 points) Let A be a Hermitian matrix and B = Re A, the real part of A. Show that

$$\max_{\mu\in\sigma(B)}\mu\leq \max_{\lambda\in\sigma(A)}\lambda$$

Here $\sigma(A), \sigma(B)$ are the spectrums of A, B respectively.

Problem 5 (12 points) Let $A, B : \mathbb{C}^n \to \mathbb{C}^n$ be two orthogonal projections satisfying for any $x \in \mathbb{C}^n$,

$$||Ax||^{2} + ||Bx||^{2} = ||x||^{2}.$$

Show that

$$A + B = I.$$

Problem 6 (12 points) Let $A = (a_{ij})$ be an $n \times n$ real matrix satisfying the following diagonally dominant condition

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, \text{ for all } i = 1, 2, \dots, n.$$

Prove that A is invertible.