University of Pittsburgh Department of Mathematics

Linear algebra preliminary exam

2 May 2018

Rule: You can use theorems proved in class or in the textbooks (provide proper reference), but if you use a statement from homework or tests you need to provide a proof.

Problem 1. Let $A \in \mathbb{R}^{n \times n}$ be a matrix whose components are either 1 or -1. Prove that $\det A = 2^{n-1}m$ where m is an integer.

Problem 2. Assume that V is a finite dimensional complex vector space. Suppose $T, U \in L(V, V)$ are two operators and that TU-UT is nonnegative. Prove that T and U have a common eigenvector.

Problem 3. Prove that for any two matrices $A, B \in \mathbb{R}^{n \times n}$,

$$\det(I - AB) = \det(I - BA).$$

Problem 4.

(a) Assume $A \in \mathbb{C}^{n \times n}$ has *n* distinct nonzero eigenvalues. Prove that there are exactly 2^n distinct matrices *B* such that $B^2 = A$ (i.e., in particular, there are no more than 2^n matrices with this property).

(b) How many such matrices $B \in \mathbb{C}^{3 \times 3}$ exist if A = diag(2, 2, 1). Why?

Problem 5. Let $f: \mathbb{C}^{n+1} \times \mathbb{C}^{n+1} \to \mathbb{C}$ be the function defined for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n+1}$ by

$$f(\mathbf{x}, \mathbf{y}) := \sum_{j=1}^{n} x_j \bar{y}_j - x_{n+1} \bar{y}_{n+1}.$$

(a) For $A, B \in \mathbb{C}^{(n+1)\times(n+1)}$, show that $f(A\mathbf{x}, \mathbf{y}) = f(\mathbf{x}, B\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{C}^{n+1}$ if and only if $A = JB^*J$, where $J = \text{diag}(1, \dots, 1, -1)$.

(b) We define

$$U(n,1) := \{ U \in \mathbb{C}^{(n+1) \times (n+1)} \mid f(U\mathbf{x}, U\mathbf{y}) = f(\mathbf{x}, \mathbf{y}) \ \forall \mathbf{x}, \mathbf{y} \in \mathbb{C}^{n+1} \}.$$

Show that if $U \in U(n, 1)$ then U is invertible. How do U^{-1} and U^* relate?

Problem 6. Prove that there exists a constant C > 0 such that for all matrices $A \in \mathbb{C}^{3\times 3}$, there exists $P \in U(3)$ and a diagonal $D \in \mathbb{C}^{3\times 3}$ such that

$$||P^*AP - D||^2 \le C||A^*A - AA^*||,$$

where $||B|| := \text{Tr}(BB^*)^{1/2}$ denotes the Hilbert-Schmidt norm of B.

Hint: Prove the statement for the class of triangular matrices first.