Intuitionistic logic, negative dimensional tensors, and angular momentum

Jonathan Holland
University of Pittsburgh

April 9, 2015

Abstract

In the 1970s, Roger Penrose proposed a kind of object that he called a "negative-dimensional tensor". These could be used to decompose the structure constants of the Lie algebra of angular momentum in three dimensions into a simple product of tensors of dimension -2. I shall give a construction of such negative-dimensional objects, that rests on an intuitionistic interpretation of the famous Euler "identity"
$2+4+8+16+\ldots=-2$.

Outline

(9) Intuitionism
(2) $2+4+8+16+\cdots=$?
(3) Angular momentum

Introduction and motivation

- Fundamental theorem of twistor theory (2013): The collection of zero rest-mass fields in space-time of all helicities forms a representation of the Heisenberg algebra in four degrees of freedom.
- Much of our work since then has been devoted to how to understand what such a result might mean in a curved space-time, especially at very high energies present at the moment of the big bang.
- Candidate geometries, harmonic analysis, etc
- What kinds of mathematics describe the universe?

Why intuitionism?

- The principle of parsimony in science: The "simplest" explanation is often the best. The "simplest" rules for inference are those based on constructive mathematics.
- The information paradox: Infinite quantities of information cannot be represented in any finite region of space-time. (Black holes, cosmic censorship, etc.)
- The reality/complexity problem: Why do real and complex numbers (apparently) describe the world so well?

Data streams

- A data stream is a sequence of bits, 0's and 1's
- We do not necessarily know in advance how large a data stream is, or even if it is finite (zero terminated) or infinite.
- How do we decide if two data streams are equal?
- We compare them, bit by bit, using a Turing machine that halts iff they are unequal, and outputs the index of the first bit at which the two data streams disagree.

Semantics of equality and inequality

- We will write $A={ }_{n} B$ if A and B agree up to n places.
- We shall think of this as assigning a credence to the statement " $A \neq B$ ". The credence of $A \neq B$, if A and B agree up to n places, is 2^{-n}.
- Credence defines a metric on the set of all binary sequences.

The 2-adic numbers

- The "intuitionistic" metric that we have described is closely related to the 2 -adic metric in number theory.
- Any positive integer n is uniquely expressible as $n=k \cdot 2^{m}$ with k odd. The 2 -adic norm is defined by

$$
|n|_{2}=2^{-m}
$$

The metric is $d\left(n_{1}, n_{2}\right)=\left|n_{1}-n_{2}\right|_{2}$.

- This norm satisfies a strong version of the triangle inequality:

$$
\left|n_{1}+n_{2}\right|_{2} \leq \max \left\{\left|n_{1}\right|_{2},\left|n_{2}\right|_{2}\right\}
$$

(The ultrametric inequality.)

- If we regard the positive integers in binary, then they are identified with the set of finite binary sequences. The completion of \mathbb{N} under this metric is the set of infinite

The binary tree, Cantor set, and $S L_{2}(\mathbb{Z})$

Reality

Theorem

Associated to any suitably generic $\{0,1\}$-valued harmonic function on the binary tree is a natural S^{1}, as a real manifold, with a projective structure.

A curious identity

- $x+x^{2}+x^{3}+\cdots=\frac{x}{1-x}$ (provided $|x|<1$)
- Evaluating this at $x=2$ gives

$$
2+4+8+16+\cdots=-2
$$

(Euler)

- Obviously, we shouldn't take this too seriously.
- But in fact, this is true exactly as stated over the 2-adic integers!

A model in spins

- Let V be a two-dimensional complex vector space, spanned by two vectors which we denote $|\uparrow\rangle$ and $|\downarrow\rangle$.
- Then $V \otimes V$ is the four dimensional space spanned by

$$
\begin{array}{ll}
|\uparrow \uparrow\rangle=|\uparrow\rangle \otimes|\uparrow\rangle & |\uparrow \downarrow\rangle=|\uparrow\rangle \otimes|\downarrow\rangle \\
|\downarrow \uparrow\rangle=|\downarrow\rangle \otimes|\uparrow\rangle & |\downarrow \downarrow\rangle=|\downarrow\rangle \otimes|\downarrow\rangle
\end{array}
$$

- Then $V \otimes V \otimes V$ is the eight-dimensional vector space spanned by all configurations of the spins of three particles into up and down states. Etc

Fock space

- Now let us form the "Fock space" by taking the direct sum of all of these different spins:

$$
H=V \oplus(V \otimes V) \oplus(V \otimes V \otimes V) \oplus \cdots
$$

- The dimension is $2+4+8+16+\cdots$.
- Is there a legitimate sense in which this equals -2? (And why should we care?)

Observables

- Observables are self-adjoint projection operators.
- The dimension of the space of fixed points of a (finitely supported) observable gives an integer-valued function on the observables.
- The trace of the identity is the sum $2+4+8+16+\cdots$

An intuitionistic model

- Let H be the space of finitely supported $F_{2}=\{0,1\}$-valued functions on the binary tree. (A vector space over F_{2}.)
- The trace of a finitely-supported endomorphism of H is defined as the number of fixed points of the endomorphism.
- The trace is integer valued, and is Lipschitz with respect to a pair of 2-adic metrics.
- It extends continuously to the completion. In the completion, we have $\operatorname{tr}(I)=-2$!

Angular momentum axioms (Penrose, 1971

Factorization into negative-dimensional "binors"

where

$$
\Omega=-2
$$

Thank you!

